Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+\sqrt{5}\right)\left(2+\sqrt{2}\right)}{\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}+3
Rationalize the denominator of \frac{1+\sqrt{5}}{2-\sqrt{2}} by multiplying numerator and denominator by 2+\sqrt{2}.
\frac{\left(1+\sqrt{5}\right)\left(2+\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}+3
Consider \left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+\sqrt{5}\right)\left(2+\sqrt{2}\right)}{4-2}+3
Square 2. Square \sqrt{2}.
\frac{\left(1+\sqrt{5}\right)\left(2+\sqrt{2}\right)}{2}+3
Subtract 2 from 4 to get 2.
\frac{\left(1+\sqrt{5}\right)\left(2+\sqrt{2}\right)}{2}+\frac{3\times 2}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2}{2}.
\frac{\left(1+\sqrt{5}\right)\left(2+\sqrt{2}\right)+3\times 2}{2}
Since \frac{\left(1+\sqrt{5}\right)\left(2+\sqrt{2}\right)}{2} and \frac{3\times 2}{2} have the same denominator, add them by adding their numerators.
\frac{2+\sqrt{2}+2\sqrt{5}+\sqrt{10}+6}{2}
Do the multiplications in \left(1+\sqrt{5}\right)\left(2+\sqrt{2}\right)+3\times 2.
\frac{8+\sqrt{10}+\sqrt{2}+2\sqrt{5}}{2}
Do the calculations in 2+\sqrt{2}+2\sqrt{5}+\sqrt{10}+6.