Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{1+\sqrt{5}}{2}-\frac{\left(1+\sqrt{5}\right)^{2}}{2^{2}}
To raise \frac{1+\sqrt{5}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{1+\sqrt{5}}{2}-\frac{1+2\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{5}\right)^{2}.
\frac{1+\sqrt{5}}{2}-\frac{1+2\sqrt{5}+5}{2^{2}}
The square of \sqrt{5} is 5.
\frac{1+\sqrt{5}}{2}-\frac{6+2\sqrt{5}}{2^{2}}
Add 1 and 5 to get 6.
\frac{1+\sqrt{5}}{2}-\frac{6+2\sqrt{5}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{2\left(1+\sqrt{5}\right)}{4}-\frac{6+2\sqrt{5}}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4 is 4. Multiply \frac{1+\sqrt{5}}{2} times \frac{2}{2}.
\frac{2\left(1+\sqrt{5}\right)-\left(6+2\sqrt{5}\right)}{4}
Since \frac{2\left(1+\sqrt{5}\right)}{4} and \frac{6+2\sqrt{5}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{2+2\sqrt{5}-6-2\sqrt{5}}{4}
Do the multiplications in 2\left(1+\sqrt{5}\right)-\left(6+2\sqrt{5}\right).
\frac{-4}{4}
Do the calculations in 2+2\sqrt{5}-6-2\sqrt{5}.
-1
Divide -4 by 4 to get -1.