Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+\sqrt{3}\right)\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}
Rationalize the denominator of \frac{1+\sqrt{3}}{3+\sqrt{3}} by multiplying numerator and denominator by 3-\sqrt{3}.
\frac{\left(1+\sqrt{3}\right)\left(3-\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+\sqrt{3}\right)\left(3-\sqrt{3}\right)}{9-3}
Square 3. Square \sqrt{3}.
\frac{\left(1+\sqrt{3}\right)\left(3-\sqrt{3}\right)}{6}
Subtract 3 from 9 to get 6.
\frac{3-\sqrt{3}+3\sqrt{3}-\left(\sqrt{3}\right)^{2}}{6}
Apply the distributive property by multiplying each term of 1+\sqrt{3} by each term of 3-\sqrt{3}.
\frac{3+2\sqrt{3}-\left(\sqrt{3}\right)^{2}}{6}
Combine -\sqrt{3} and 3\sqrt{3} to get 2\sqrt{3}.
\frac{3+2\sqrt{3}-3}{6}
The square of \sqrt{3} is 3.
\frac{2\sqrt{3}}{6}
Subtract 3 from 3 to get 0.
\frac{1}{3}\sqrt{3}
Divide 2\sqrt{3} by 6 to get \frac{1}{3}\sqrt{3}.