Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+\sqrt{2}\right)\left(1+\sqrt{2}\right)}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}
Rationalize the denominator of \frac{1+\sqrt{2}}{1-\sqrt{2}} by multiplying numerator and denominator by 1+\sqrt{2}.
\frac{\left(1+\sqrt{2}\right)\left(1+\sqrt{2}\right)}{1^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+\sqrt{2}\right)\left(1+\sqrt{2}\right)}{1-2}
Square 1. Square \sqrt{2}.
\frac{\left(1+\sqrt{2}\right)\left(1+\sqrt{2}\right)}{-1}
Subtract 2 from 1 to get -1.
\frac{\left(1+\sqrt{2}\right)^{2}}{-1}
Multiply 1+\sqrt{2} and 1+\sqrt{2} to get \left(1+\sqrt{2}\right)^{2}.
\frac{1+2\sqrt{2}+\left(\sqrt{2}\right)^{2}}{-1}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{2}\right)^{2}.
\frac{1+2\sqrt{2}+2}{-1}
The square of \sqrt{2} is 2.
\frac{3+2\sqrt{2}}{-1}
Add 1 and 2 to get 3.
-3-2\sqrt{2}
Anything divided by -1 gives its opposite. To find the opposite of 3+2\sqrt{2}, find the opposite of each term.