Evaluate
-2\sqrt{2}-3\approx -5.828427125
Share
Copied to clipboard
\frac{\left(1+\sqrt{2}\right)\left(1+\sqrt{2}\right)}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}
Rationalize the denominator of \frac{1+\sqrt{2}}{1-\sqrt{2}} by multiplying numerator and denominator by 1+\sqrt{2}.
\frac{\left(1+\sqrt{2}\right)\left(1+\sqrt{2}\right)}{1^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+\sqrt{2}\right)\left(1+\sqrt{2}\right)}{1-2}
Square 1. Square \sqrt{2}.
\frac{\left(1+\sqrt{2}\right)\left(1+\sqrt{2}\right)}{-1}
Subtract 2 from 1 to get -1.
\frac{\left(1+\sqrt{2}\right)^{2}}{-1}
Multiply 1+\sqrt{2} and 1+\sqrt{2} to get \left(1+\sqrt{2}\right)^{2}.
\frac{1+2\sqrt{2}+\left(\sqrt{2}\right)^{2}}{-1}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{2}\right)^{2}.
\frac{1+2\sqrt{2}+2}{-1}
The square of \sqrt{2} is 2.
\frac{3+2\sqrt{2}}{-1}
Add 1 and 2 to get 3.
-3-2\sqrt{2}
Anything divided by -1 gives its opposite. To find the opposite of 3+2\sqrt{2}, find the opposite of each term.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}