Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1+\frac{i}{-1}}{1-\frac{1}{i}}
Multiply both numerator and denominator of \frac{1}{i} by imaginary unit i.
\frac{1-i}{1-\frac{1}{i}}
Divide i by -1 to get -i.
\frac{1-i}{1-\frac{i}{-1}}
Multiply both numerator and denominator of \frac{1}{i} by imaginary unit i.
\frac{1-i}{1+i}
Divide i by -1 to get -i.
\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-i.
\frac{-2i}{2}
Do the multiplications in \frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
-i
Divide -2i by 2 to get -i.
Re(\frac{1+\frac{i}{-1}}{1-\frac{1}{i}})
Multiply both numerator and denominator of \frac{1}{i} by imaginary unit i.
Re(\frac{1-i}{1-\frac{1}{i}})
Divide i by -1 to get -i.
Re(\frac{1-i}{1-\frac{i}{-1}})
Multiply both numerator and denominator of \frac{1}{i} by imaginary unit i.
Re(\frac{1-i}{1+i})
Divide i by -1 to get -i.
Re(\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{1-i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{-2i}{2})
Do the multiplications in \frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(-i)
Divide -2i by 2 to get -i.
0
The real part of -i is 0.