Evaluate
-\frac{500}{117}\approx -4.273504274
Factor
-\frac{500}{117} = -4\frac{32}{117} = -4.273504273504273
Share
Copied to clipboard
\frac{\frac{4}{4}+\frac{1}{4}}{\frac{\frac{1}{2}}{1+\frac{2}{3}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Convert 1 to fraction \frac{4}{4}.
\frac{\frac{4+1}{4}}{\frac{\frac{1}{2}}{1+\frac{2}{3}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Since \frac{4}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{\frac{5}{4}}{\frac{\frac{1}{2}}{1+\frac{2}{3}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Add 4 and 1 to get 5.
\frac{\frac{5}{4}}{\frac{\frac{1}{2}}{\frac{3}{3}+\frac{2}{3}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{5}{4}}{\frac{\frac{1}{2}}{\frac{3+2}{3}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Since \frac{3}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{5}{4}}{\frac{\frac{1}{2}}{\frac{5}{3}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Add 3 and 2 to get 5.
\frac{\frac{5}{4}}{\frac{1}{2}\times \frac{3}{5}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Divide \frac{1}{2} by \frac{5}{3} by multiplying \frac{1}{2} by the reciprocal of \frac{5}{3}.
\frac{\frac{5}{4}}{\frac{1\times 3}{2\times 5}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Multiply \frac{1}{2} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Do the multiplications in the fraction \frac{1\times 3}{2\times 5}.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{\frac{4}{4}-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Convert 1 to fraction \frac{4}{4}.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{\frac{4-1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Since \frac{4}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{\frac{3}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Subtract 1 from 4 to get 3.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{3}{4}\times 3}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Divide \frac{3}{4} by \frac{1}{3} by multiplying \frac{3}{4} by the reciprocal of \frac{1}{3}.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{3\times 3}{4}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Express \frac{3}{4}\times 3 as a single fraction.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{9}{4}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Multiply 3 and 3 to get 9.
\frac{\frac{5}{4}}{\frac{6}{20}-\frac{45}{20}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Least common multiple of 10 and 4 is 20. Convert \frac{3}{10} and \frac{9}{4} to fractions with denominator 20.
\frac{\frac{5}{4}}{\frac{6-45}{20}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Since \frac{6}{20} and \frac{45}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5}{4}}{-\frac{39}{20}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Subtract 45 from 6 to get -39.
\frac{5}{4}\left(-\frac{20}{39}\right)\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Divide \frac{5}{4} by -\frac{39}{20} by multiplying \frac{5}{4} by the reciprocal of -\frac{39}{20}.
\frac{5\left(-20\right)}{4\times 39}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Multiply \frac{5}{4} times -\frac{20}{39} by multiplying numerator times numerator and denominator times denominator.
\frac{-100}{156}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Do the multiplications in the fraction \frac{5\left(-20\right)}{4\times 39}.
-\frac{25}{39}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Reduce the fraction \frac{-100}{156} to lowest terms by extracting and canceling out 4.
-\frac{25}{39}\left(\frac{30+1}{3}-\frac{3\times 3+2}{3}\right)
Multiply 10 and 3 to get 30.
-\frac{25}{39}\left(\frac{31}{3}-\frac{3\times 3+2}{3}\right)
Add 30 and 1 to get 31.
-\frac{25}{39}\left(\frac{31}{3}-\frac{9+2}{3}\right)
Multiply 3 and 3 to get 9.
-\frac{25}{39}\left(\frac{31}{3}-\frac{11}{3}\right)
Add 9 and 2 to get 11.
-\frac{25}{39}\times \frac{31-11}{3}
Since \frac{31}{3} and \frac{11}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{25}{39}\times \frac{20}{3}
Subtract 11 from 31 to get 20.
\frac{-25\times 20}{39\times 3}
Multiply -\frac{25}{39} times \frac{20}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-500}{117}
Do the multiplications in the fraction \frac{-25\times 20}{39\times 3}.
-\frac{500}{117}
Fraction \frac{-500}{117} can be rewritten as -\frac{500}{117} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}