Evaluate
-\frac{9}{2}=-4.5
Factor
-\frac{9}{2} = -4\frac{1}{2} = -4.5
Share
Copied to clipboard
\frac{1+\frac{1\times 3}{3\times 5}}{\frac{1}{3}-\frac{3}{5}}
Multiply \frac{1}{3} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1+\frac{1}{5}}{\frac{1}{3}-\frac{3}{5}}
Cancel out 3 in both numerator and denominator.
\frac{\frac{5}{5}+\frac{1}{5}}{\frac{1}{3}-\frac{3}{5}}
Convert 1 to fraction \frac{5}{5}.
\frac{\frac{5+1}{5}}{\frac{1}{3}-\frac{3}{5}}
Since \frac{5}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
\frac{\frac{6}{5}}{\frac{1}{3}-\frac{3}{5}}
Add 5 and 1 to get 6.
\frac{\frac{6}{5}}{\frac{5}{15}-\frac{9}{15}}
Least common multiple of 3 and 5 is 15. Convert \frac{1}{3} and \frac{3}{5} to fractions with denominator 15.
\frac{\frac{6}{5}}{\frac{5-9}{15}}
Since \frac{5}{15} and \frac{9}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{6}{5}}{-\frac{4}{15}}
Subtract 9 from 5 to get -4.
\frac{6}{5}\left(-\frac{15}{4}\right)
Divide \frac{6}{5} by -\frac{4}{15} by multiplying \frac{6}{5} by the reciprocal of -\frac{4}{15}.
\frac{6\left(-15\right)}{5\times 4}
Multiply \frac{6}{5} times -\frac{15}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{-90}{20}
Do the multiplications in the fraction \frac{6\left(-15\right)}{5\times 4}.
-\frac{9}{2}
Reduce the fraction \frac{-90}{20} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}