Evaluate
3
Factor
3
Share
Copied to clipboard
\frac{1+\frac{1}{\frac{2}{2}-\frac{1}{2}}}{-1+\frac{3}{1+\frac{1}{2}}}
Convert 1 to fraction \frac{2}{2}.
\frac{1+\frac{1}{\frac{2-1}{2}}}{-1+\frac{3}{1+\frac{1}{2}}}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{1+\frac{1}{\frac{1}{2}}}{-1+\frac{3}{1+\frac{1}{2}}}
Subtract 1 from 2 to get 1.
\frac{1+1\times 2}{-1+\frac{3}{1+\frac{1}{2}}}
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
\frac{1+2}{-1+\frac{3}{1+\frac{1}{2}}}
Multiply 1 and 2 to get 2.
\frac{3}{-1+\frac{3}{1+\frac{1}{2}}}
Add 1 and 2 to get 3.
\frac{3}{-1+\frac{3}{\frac{2}{2}+\frac{1}{2}}}
Convert 1 to fraction \frac{2}{2}.
\frac{3}{-1+\frac{3}{\frac{2+1}{2}}}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{3}{-1+\frac{3}{\frac{3}{2}}}
Add 2 and 1 to get 3.
\frac{3}{-1+3\times \frac{2}{3}}
Divide 3 by \frac{3}{2} by multiplying 3 by the reciprocal of \frac{3}{2}.
\frac{3}{-1+2}
Cancel out 3 and 3.
\frac{3}{1}
Add -1 and 2 to get 1.
3
Anything divided by one gives itself.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}