Evaluate
\frac{7}{2}=3.5
Factor
\frac{7}{2} = 3\frac{1}{2} = 3.5
Share
Copied to clipboard
\frac{1+\frac{\frac{2}{2}+\frac{1}{2}}{2}}{\frac{1}{2}}
Convert 1 to fraction \frac{2}{2}.
\frac{1+\frac{\frac{2+1}{2}}{2}}{\frac{1}{2}}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{1+\frac{\frac{3}{2}}{2}}{\frac{1}{2}}
Add 2 and 1 to get 3.
\frac{1+\frac{3}{2\times 2}}{\frac{1}{2}}
Express \frac{\frac{3}{2}}{2} as a single fraction.
\frac{1+\frac{3}{4}}{\frac{1}{2}}
Multiply 2 and 2 to get 4.
\frac{\frac{4}{4}+\frac{3}{4}}{\frac{1}{2}}
Convert 1 to fraction \frac{4}{4}.
\frac{\frac{4+3}{4}}{\frac{1}{2}}
Since \frac{4}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\frac{\frac{7}{4}}{\frac{1}{2}}
Add 4 and 3 to get 7.
\frac{7}{4}\times 2
Divide \frac{7}{4} by \frac{1}{2} by multiplying \frac{7}{4} by the reciprocal of \frac{1}{2}.
\frac{7\times 2}{4}
Express \frac{7}{4}\times 2 as a single fraction.
\frac{14}{4}
Multiply 7 and 2 to get 14.
\frac{7}{2}
Reduce the fraction \frac{14}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}