Skip to main content
Solve for p (complex solution)
Tick mark Image
Solve for p
Tick mark Image
Solve for a (complex solution)
Tick mark Image

Similar Problems from Web Search

Share

\left(49-x^{2}\right)parax=-13é\left(-x+7\right)
Multiply both sides of the equation by -x+7.
\left(49-x^{2}\right)pa^{2}rx=-13é\left(-x+7\right)
Multiply a and a to get a^{2}.
\left(49p-x^{2}p\right)a^{2}rx=-13é\left(-x+7\right)
Use the distributive property to multiply 49-x^{2} by p.
\left(49pa^{2}-x^{2}pa^{2}\right)rx=-13é\left(-x+7\right)
Use the distributive property to multiply 49p-x^{2}p by a^{2}.
\left(49pa^{2}r-x^{2}pa^{2}r\right)x=-13é\left(-x+7\right)
Use the distributive property to multiply 49pa^{2}-x^{2}pa^{2} by r.
49pa^{2}rx-pa^{2}rx^{3}=-13é\left(-x+7\right)
Use the distributive property to multiply 49pa^{2}r-x^{2}pa^{2}r by x.
49pa^{2}rx-pa^{2}rx^{3}=13éx-91é
Use the distributive property to multiply -13é by -x+7.
\left(49a^{2}rx-a^{2}rx^{3}\right)p=13éx-91é
Combine all terms containing p.
\left(49rxa^{2}-ra^{2}x^{3}\right)p=13xé-91é
The equation is in standard form.
\frac{\left(49rxa^{2}-ra^{2}x^{3}\right)p}{49rxa^{2}-ra^{2}x^{3}}=\frac{13é\left(x-7\right)}{49rxa^{2}-ra^{2}x^{3}}
Divide both sides by 49a^{2}rx-a^{2}rx^{3}.
p=\frac{13é\left(x-7\right)}{49rxa^{2}-ra^{2}x^{3}}
Dividing by 49a^{2}rx-a^{2}rx^{3} undoes the multiplication by 49a^{2}rx-a^{2}rx^{3}.
p=-\frac{13é}{rx\left(x+7\right)a^{2}}
Divide 13é\left(-7+x\right) by 49a^{2}rx-a^{2}rx^{3}.
\left(49-x^{2}\right)parax=-13é\left(-x+7\right)
Multiply both sides of the equation by -x+7.
\left(49-x^{2}\right)pa^{2}rx=-13é\left(-x+7\right)
Multiply a and a to get a^{2}.
\left(49p-x^{2}p\right)a^{2}rx=-13é\left(-x+7\right)
Use the distributive property to multiply 49-x^{2} by p.
\left(49pa^{2}-x^{2}pa^{2}\right)rx=-13é\left(-x+7\right)
Use the distributive property to multiply 49p-x^{2}p by a^{2}.
\left(49pa^{2}r-x^{2}pa^{2}r\right)x=-13é\left(-x+7\right)
Use the distributive property to multiply 49pa^{2}-x^{2}pa^{2} by r.
49pa^{2}rx-pa^{2}rx^{3}=-13é\left(-x+7\right)
Use the distributive property to multiply 49pa^{2}r-x^{2}pa^{2}r by x.
49pa^{2}rx-pa^{2}rx^{3}=13éx-91é
Use the distributive property to multiply -13é by -x+7.
\left(49a^{2}rx-a^{2}rx^{3}\right)p=13éx-91é
Combine all terms containing p.
\left(49rxa^{2}-ra^{2}x^{3}\right)p=13xé-91é
The equation is in standard form.
\frac{\left(49rxa^{2}-ra^{2}x^{3}\right)p}{49rxa^{2}-ra^{2}x^{3}}=\frac{13é\left(x-7\right)}{49rxa^{2}-ra^{2}x^{3}}
Divide both sides by 49a^{2}rx-a^{2}rx^{3}.
p=\frac{13é\left(x-7\right)}{49rxa^{2}-ra^{2}x^{3}}
Dividing by 49a^{2}rx-a^{2}rx^{3} undoes the multiplication by 49a^{2}rx-a^{2}rx^{3}.
p=-\frac{13é}{rx\left(x+7\right)a^{2}}
Divide 13é\left(-7+x\right) by 49a^{2}rx-a^{2}rx^{3}.