Evaluate
\frac{e}{5}\approx 0.543656366
Expand
\frac{e}{5}
Share
Copied to clipboard
\frac{0.08589934592-0.8^{12}}{0.8^{11}}e
Calculate 0.8 to the power of 11 and get 0.08589934592.
\frac{0.08589934592-0.068719476736}{0.8^{11}}e
Calculate 0.8 to the power of 12 and get 0.068719476736.
\frac{0.017179869184}{0.8^{11}}e
Subtract 0.068719476736 from 0.08589934592 to get 0.017179869184.
\frac{0.017179869184}{0.08589934592}e
Calculate 0.8 to the power of 11 and get 0.08589934592.
\frac{17179869184}{85899345920}e
Expand \frac{0.017179869184}{0.08589934592} by multiplying both numerator and the denominator by 1000000000000.
\frac{1}{5}e
Reduce the fraction \frac{17179869184}{85899345920} to lowest terms by extracting and canceling out 17179869184.
\frac{0.08589934592-0.8^{12}}{0.8^{11}}e
Calculate 0.8 to the power of 11 and get 0.08589934592.
\frac{0.08589934592-0.068719476736}{0.8^{11}}e
Calculate 0.8 to the power of 12 and get 0.068719476736.
\frac{0.017179869184}{0.8^{11}}e
Subtract 0.068719476736 from 0.08589934592 to get 0.017179869184.
\frac{0.017179869184}{0.08589934592}e
Calculate 0.8 to the power of 11 and get 0.08589934592.
\frac{17179869184}{85899345920}e
Expand \frac{0.017179869184}{0.08589934592} by multiplying both numerator and the denominator by 1000000000000.
\frac{1}{5}e
Reduce the fraction \frac{17179869184}{85899345920} to lowest terms by extracting and canceling out 17179869184.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}