Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{0.72i\left(0.6+1.2i\right)}{\left(0.6-1.2i\right)\left(0.6+1.2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 0.6+1.2i.
\frac{0.72i\left(0.6+1.2i\right)}{0.6^{2}-1.2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{0.72i\left(0.6+1.2i\right)}{1.8}
By definition, i^{2} is -1. Calculate the denominator.
\frac{0.72i\times 0.6+0.72\times 1.2i^{2}}{1.8}
Multiply 0.72i times 0.6+1.2i.
\frac{0.72i\times 0.6+0.72\times 1.2\left(-1\right)}{1.8}
By definition, i^{2} is -1.
\frac{-0.864+0.432i}{1.8}
Do the multiplications in 0.72i\times 0.6+0.72\times 1.2\left(-1\right). Reorder the terms.
-0.48+0.24i
Divide -0.864+0.432i by 1.8 to get -0.48+0.24i.
Re(\frac{0.72i\left(0.6+1.2i\right)}{\left(0.6-1.2i\right)\left(0.6+1.2i\right)})
Multiply both numerator and denominator of \frac{0.72i}{0.6-1.2i} by the complex conjugate of the denominator, 0.6+1.2i.
Re(\frac{0.72i\left(0.6+1.2i\right)}{0.6^{2}-1.2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{0.72i\left(0.6+1.2i\right)}{1.8})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{0.72i\times 0.6+0.72\times 1.2i^{2}}{1.8})
Multiply 0.72i times 0.6+1.2i.
Re(\frac{0.72i\times 0.6+0.72\times 1.2\left(-1\right)}{1.8})
By definition, i^{2} is -1.
Re(\frac{-0.864+0.432i}{1.8})
Do the multiplications in 0.72i\times 0.6+0.72\times 1.2\left(-1\right). Reorder the terms.
Re(-0.48+0.24i)
Divide -0.864+0.432i by 1.8 to get -0.48+0.24i.
-0.48
The real part of -0.48+0.24i is -0.48.