Evaluate
-0.48+0.24i
Real Part
-0.48
Share
Copied to clipboard
\frac{0.72i\left(0.6+1.2i\right)}{\left(0.6-1.2i\right)\left(0.6+1.2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 0.6+1.2i.
\frac{0.72i\left(0.6+1.2i\right)}{0.6^{2}-1.2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{0.72i\left(0.6+1.2i\right)}{1.8}
By definition, i^{2} is -1. Calculate the denominator.
\frac{0.72i\times 0.6+0.72\times 1.2i^{2}}{1.8}
Multiply 0.72i times 0.6+1.2i.
\frac{0.72i\times 0.6+0.72\times 1.2\left(-1\right)}{1.8}
By definition, i^{2} is -1.
\frac{-0.864+0.432i}{1.8}
Do the multiplications in 0.72i\times 0.6+0.72\times 1.2\left(-1\right). Reorder the terms.
-0.48+0.24i
Divide -0.864+0.432i by 1.8 to get -0.48+0.24i.
Re(\frac{0.72i\left(0.6+1.2i\right)}{\left(0.6-1.2i\right)\left(0.6+1.2i\right)})
Multiply both numerator and denominator of \frac{0.72i}{0.6-1.2i} by the complex conjugate of the denominator, 0.6+1.2i.
Re(\frac{0.72i\left(0.6+1.2i\right)}{0.6^{2}-1.2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{0.72i\left(0.6+1.2i\right)}{1.8})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{0.72i\times 0.6+0.72\times 1.2i^{2}}{1.8})
Multiply 0.72i times 0.6+1.2i.
Re(\frac{0.72i\times 0.6+0.72\times 1.2\left(-1\right)}{1.8})
By definition, i^{2} is -1.
Re(\frac{-0.864+0.432i}{1.8})
Do the multiplications in 0.72i\times 0.6+0.72\times 1.2\left(-1\right). Reorder the terms.
Re(-0.48+0.24i)
Divide -0.864+0.432i by 1.8 to get -0.48+0.24i.
-0.48
The real part of -0.48+0.24i is -0.48.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}