Solve for x
x=-2.8
Graph
Quiz
Linear Equation
\frac { 0.5 ( x - 0.4 ) } { 0.35 } - \frac { 0.6 ( x - 2.71 ) } { 0.42 } = x + 6.1
Share
Copied to clipboard
\frac{0.5x-0.2}{0.35}-\frac{0.6\left(x-2.71\right)}{0.42}=x+6.1
Use the distributive property to multiply 0.5 by x-0.4.
\frac{0.5x-0.2}{0.35}-\frac{0.6x-1.626}{0.42}=x+6.1
Use the distributive property to multiply 0.6 by x-2.71.
\frac{0.5x}{0.35}+\frac{-0.2}{0.35}-\frac{0.6x-1.626}{0.42}=x+6.1
Divide each term of 0.5x-0.2 by 0.35 to get \frac{0.5x}{0.35}+\frac{-0.2}{0.35}.
\frac{10}{7}x+\frac{-0.2}{0.35}-\frac{0.6x-1.626}{0.42}=x+6.1
Divide 0.5x by 0.35 to get \frac{10}{7}x.
\frac{10}{7}x+\frac{-20}{35}-\frac{0.6x-1.626}{0.42}=x+6.1
Expand \frac{-0.2}{0.35} by multiplying both numerator and the denominator by 100.
\frac{10}{7}x-\frac{4}{7}-\frac{0.6x-1.626}{0.42}=x+6.1
Reduce the fraction \frac{-20}{35} to lowest terms by extracting and canceling out 5.
\frac{10}{7}x-\frac{4}{7}-\left(\frac{0.6x}{0.42}+\frac{-1.626}{0.42}\right)=x+6.1
Divide each term of 0.6x-1.626 by 0.42 to get \frac{0.6x}{0.42}+\frac{-1.626}{0.42}.
\frac{10}{7}x-\frac{4}{7}-\left(\frac{10}{7}x+\frac{-1.626}{0.42}\right)=x+6.1
Divide 0.6x by 0.42 to get \frac{10}{7}x.
\frac{10}{7}x-\frac{4}{7}-\left(\frac{10}{7}x+\frac{-1626}{420}\right)=x+6.1
Expand \frac{-1.626}{0.42} by multiplying both numerator and the denominator by 1000.
\frac{10}{7}x-\frac{4}{7}-\left(\frac{10}{7}x-\frac{271}{70}\right)=x+6.1
Reduce the fraction \frac{-1626}{420} to lowest terms by extracting and canceling out 6.
\frac{10}{7}x-\frac{4}{7}-\frac{10}{7}x-\left(-\frac{271}{70}\right)=x+6.1
To find the opposite of \frac{10}{7}x-\frac{271}{70}, find the opposite of each term.
\frac{10}{7}x-\frac{4}{7}-\frac{10}{7}x+\frac{271}{70}=x+6.1
The opposite of -\frac{271}{70} is \frac{271}{70}.
-\frac{4}{7}+\frac{271}{70}=x+6.1
Combine \frac{10}{7}x and -\frac{10}{7}x to get 0.
-\frac{40}{70}+\frac{271}{70}=x+6.1
Least common multiple of 7 and 70 is 70. Convert -\frac{4}{7} and \frac{271}{70} to fractions with denominator 70.
\frac{-40+271}{70}=x+6.1
Since -\frac{40}{70} and \frac{271}{70} have the same denominator, add them by adding their numerators.
\frac{231}{70}=x+6.1
Add -40 and 271 to get 231.
\frac{33}{10}=x+6.1
Reduce the fraction \frac{231}{70} to lowest terms by extracting and canceling out 7.
x+6.1=\frac{33}{10}
Swap sides so that all variable terms are on the left hand side.
x=\frac{33}{10}-6.1
Subtract 6.1 from both sides.
x=\frac{33}{10}-\frac{61}{10}
Convert decimal number 6.1 to fraction \frac{61}{10}.
x=\frac{33-61}{10}
Since \frac{33}{10} and \frac{61}{10} have the same denominator, subtract them by subtracting their numerators.
x=\frac{-28}{10}
Subtract 61 from 33 to get -28.
x=-\frac{14}{5}
Reduce the fraction \frac{-28}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}