Evaluate
\frac{1537}{2525}\approx 0.608712871
Factor
\frac{29 \cdot 53}{101 \cdot 5 ^ {2}} = 0.6087128712871287
Share
Copied to clipboard
\frac{0.48+\sqrt{\frac{10000}{10404}}\left(1.2-0.46\right)}{1+\sqrt{\frac{1}{1.0404}}}
Expand \frac{1}{1.0404} by multiplying both numerator and the denominator by 10000.
\frac{0.48+\sqrt{\frac{2500}{2601}}\left(1.2-0.46\right)}{1+\sqrt{\frac{1}{1.0404}}}
Reduce the fraction \frac{10000}{10404} to lowest terms by extracting and canceling out 4.
\frac{0.48+\frac{50}{51}\left(1.2-0.46\right)}{1+\sqrt{\frac{1}{1.0404}}}
Rewrite the square root of the division \frac{2500}{2601} as the division of square roots \frac{\sqrt{2500}}{\sqrt{2601}}. Take the square root of both numerator and denominator.
\frac{0.48+\frac{50}{51}\times 0.74}{1+\sqrt{\frac{1}{1.0404}}}
Subtract 0.46 from 1.2 to get 0.74.
\frac{0.48+\frac{50}{51}\times \frac{37}{50}}{1+\sqrt{\frac{1}{1.0404}}}
Convert decimal number 0.74 to fraction \frac{74}{100}. Reduce the fraction \frac{74}{100} to lowest terms by extracting and canceling out 2.
\frac{0.48+\frac{50\times 37}{51\times 50}}{1+\sqrt{\frac{1}{1.0404}}}
Multiply \frac{50}{51} times \frac{37}{50} by multiplying numerator times numerator and denominator times denominator.
\frac{0.48+\frac{37}{51}}{1+\sqrt{\frac{1}{1.0404}}}
Cancel out 50 in both numerator and denominator.
\frac{\frac{12}{25}+\frac{37}{51}}{1+\sqrt{\frac{1}{1.0404}}}
Convert decimal number 0.48 to fraction \frac{48}{100}. Reduce the fraction \frac{48}{100} to lowest terms by extracting and canceling out 4.
\frac{\frac{612}{1275}+\frac{925}{1275}}{1+\sqrt{\frac{1}{1.0404}}}
Least common multiple of 25 and 51 is 1275. Convert \frac{12}{25} and \frac{37}{51} to fractions with denominator 1275.
\frac{\frac{612+925}{1275}}{1+\sqrt{\frac{1}{1.0404}}}
Since \frac{612}{1275} and \frac{925}{1275} have the same denominator, add them by adding their numerators.
\frac{\frac{1537}{1275}}{1+\sqrt{\frac{1}{1.0404}}}
Add 612 and 925 to get 1537.
\frac{\frac{1537}{1275}}{1+\sqrt{\frac{10000}{10404}}}
Expand \frac{1}{1.0404} by multiplying both numerator and the denominator by 10000.
\frac{\frac{1537}{1275}}{1+\sqrt{\frac{2500}{2601}}}
Reduce the fraction \frac{10000}{10404} to lowest terms by extracting and canceling out 4.
\frac{\frac{1537}{1275}}{1+\frac{50}{51}}
Rewrite the square root of the division \frac{2500}{2601} as the division of square roots \frac{\sqrt{2500}}{\sqrt{2601}}. Take the square root of both numerator and denominator.
\frac{\frac{1537}{1275}}{\frac{51}{51}+\frac{50}{51}}
Convert 1 to fraction \frac{51}{51}.
\frac{\frac{1537}{1275}}{\frac{51+50}{51}}
Since \frac{51}{51} and \frac{50}{51} have the same denominator, add them by adding their numerators.
\frac{\frac{1537}{1275}}{\frac{101}{51}}
Add 51 and 50 to get 101.
\frac{1537}{1275}\times \frac{51}{101}
Divide \frac{1537}{1275} by \frac{101}{51} by multiplying \frac{1537}{1275} by the reciprocal of \frac{101}{51}.
\frac{1537\times 51}{1275\times 101}
Multiply \frac{1537}{1275} times \frac{51}{101} by multiplying numerator times numerator and denominator times denominator.
\frac{78387}{128775}
Do the multiplications in the fraction \frac{1537\times 51}{1275\times 101}.
\frac{1537}{2525}
Reduce the fraction \frac{78387}{128775} to lowest terms by extracting and canceling out 51.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}