Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{0.425\times 50000\pi ^{2}}{3\left(1-23^{2}\right)}\times \frac{1}{6.8}
Cancel out 4 in both numerator and denominator.
\frac{21250\pi ^{2}}{3\left(1-23^{2}\right)}\times \frac{1}{6.8}
Multiply 0.425 and 50000 to get 21250.
\frac{21250\pi ^{2}}{3\left(1-529\right)}\times \frac{1}{6.8}
Calculate 23 to the power of 2 and get 529.
\frac{21250\pi ^{2}}{3\left(-528\right)}\times \frac{1}{6.8}
Subtract 529 from 1 to get -528.
\frac{21250\pi ^{2}}{-1584}\times \frac{1}{6.8}
Multiply 3 and -528 to get -1584.
-\frac{10625}{792}\pi ^{2}\times \frac{1}{6.8}
Divide 21250\pi ^{2} by -1584 to get -\frac{10625}{792}\pi ^{2}.
-\frac{10625}{792}\pi ^{2}\times \frac{10}{68}
Expand \frac{1}{6.8} by multiplying both numerator and the denominator by 10.
-\frac{10625}{792}\pi ^{2}\times \frac{5}{34}
Reduce the fraction \frac{10}{68} to lowest terms by extracting and canceling out 2.
-\frac{3125}{1584}\pi ^{2}
Multiply -\frac{10625}{792} and \frac{5}{34} to get -\frac{3125}{1584}.
\frac{0.425\times 50000\pi ^{2}}{3\left(1-23^{2}\right)}\times \frac{1}{6.8}
Cancel out 4 in both numerator and denominator.
\frac{21250\pi ^{2}}{3\left(1-23^{2}\right)}\times \frac{1}{6.8}
Multiply 0.425 and 50000 to get 21250.
\frac{21250\pi ^{2}}{3\left(1-529\right)}\times \frac{1}{6.8}
Calculate 23 to the power of 2 and get 529.
\frac{21250\pi ^{2}}{3\left(-528\right)}\times \frac{1}{6.8}
Subtract 529 from 1 to get -528.
\frac{21250\pi ^{2}}{-1584}\times \frac{1}{6.8}
Multiply 3 and -528 to get -1584.
-\frac{10625}{792}\pi ^{2}\times \frac{1}{6.8}
Divide 21250\pi ^{2} by -1584 to get -\frac{10625}{792}\pi ^{2}.
-\frac{10625}{792}\pi ^{2}\times \frac{10}{68}
Expand \frac{1}{6.8} by multiplying both numerator and the denominator by 10.
-\frac{10625}{792}\pi ^{2}\times \frac{5}{34}
Reduce the fraction \frac{10}{68} to lowest terms by extracting and canceling out 2.
-\frac{3125}{1584}\pi ^{2}
Multiply -\frac{10625}{792} and \frac{5}{34} to get -\frac{3125}{1584}.