Solve for y
y=1.5
Graph
Share
Copied to clipboard
\frac{0.4y}{0.5}+\frac{0.9}{0.5}-\frac{0.3+0.2y}{0.3}=1
Divide each term of 0.4y+0.9 by 0.5 to get \frac{0.4y}{0.5}+\frac{0.9}{0.5}.
0.8y+\frac{0.9}{0.5}-\frac{0.3+0.2y}{0.3}=1
Divide 0.4y by 0.5 to get 0.8y.
0.8y+\frac{9}{5}-\frac{0.3+0.2y}{0.3}=1
Expand \frac{0.9}{0.5} by multiplying both numerator and the denominator by 10.
0.8y+\frac{9}{5}-\left(\frac{0.3}{0.3}+\frac{0.2y}{0.3}\right)=1
Divide each term of 0.3+0.2y by 0.3 to get \frac{0.3}{0.3}+\frac{0.2y}{0.3}.
0.8y+\frac{9}{5}-\left(1+\frac{0.2y}{0.3}\right)=1
Divide 0.3 by 0.3 to get 1.
0.8y+\frac{9}{5}-\left(1+\frac{2}{3}y\right)=1
Divide 0.2y by 0.3 to get \frac{2}{3}y.
0.8y+\frac{9}{5}-1-\frac{2}{3}y=1
To find the opposite of 1+\frac{2}{3}y, find the opposite of each term.
0.8y+\frac{9}{5}-\frac{5}{5}-\frac{2}{3}y=1
Convert 1 to fraction \frac{5}{5}.
0.8y+\frac{9-5}{5}-\frac{2}{3}y=1
Since \frac{9}{5} and \frac{5}{5} have the same denominator, subtract them by subtracting their numerators.
0.8y+\frac{4}{5}-\frac{2}{3}y=1
Subtract 5 from 9 to get 4.
\frac{2}{15}y+\frac{4}{5}=1
Combine 0.8y and -\frac{2}{3}y to get \frac{2}{15}y.
\frac{2}{15}y=1-\frac{4}{5}
Subtract \frac{4}{5} from both sides.
\frac{2}{15}y=\frac{5}{5}-\frac{4}{5}
Convert 1 to fraction \frac{5}{5}.
\frac{2}{15}y=\frac{5-4}{5}
Since \frac{5}{5} and \frac{4}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{15}y=\frac{1}{5}
Subtract 4 from 5 to get 1.
y=\frac{\frac{1}{5}}{\frac{2}{15}}
Divide both sides by \frac{2}{15}.
y=\frac{1}{5\times \frac{2}{15}}
Express \frac{\frac{1}{5}}{\frac{2}{15}} as a single fraction.
y=\frac{1}{\frac{2}{3}}
Multiply 5 and \frac{2}{15} to get \frac{2}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}