Solve for x
x=9
Graph
Share
Copied to clipboard
\frac{0.4x}{0.5}+\frac{0.9}{0.5}-\frac{0.1x-0.5}{0.2}=\frac{0.03+0.02x}{0.03}
Divide each term of 0.4x+0.9 by 0.5 to get \frac{0.4x}{0.5}+\frac{0.9}{0.5}.
0.8x+\frac{0.9}{0.5}-\frac{0.1x-0.5}{0.2}=\frac{0.03+0.02x}{0.03}
Divide 0.4x by 0.5 to get 0.8x.
0.8x+\frac{9}{5}-\frac{0.1x-0.5}{0.2}=\frac{0.03+0.02x}{0.03}
Expand \frac{0.9}{0.5} by multiplying both numerator and the denominator by 10.
0.8x+\frac{9}{5}-\left(\frac{0.1x}{0.2}+\frac{-0.5}{0.2}\right)=\frac{0.03+0.02x}{0.03}
Divide each term of 0.1x-0.5 by 0.2 to get \frac{0.1x}{0.2}+\frac{-0.5}{0.2}.
0.8x+\frac{9}{5}-\left(0.5x+\frac{-0.5}{0.2}\right)=\frac{0.03+0.02x}{0.03}
Divide 0.1x by 0.2 to get 0.5x.
0.8x+\frac{9}{5}-\left(0.5x+\frac{-5}{2}\right)=\frac{0.03+0.02x}{0.03}
Expand \frac{-0.5}{0.2} by multiplying both numerator and the denominator by 10.
0.8x+\frac{9}{5}-\left(0.5x-\frac{5}{2}\right)=\frac{0.03+0.02x}{0.03}
Fraction \frac{-5}{2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
0.8x+\frac{9}{5}-0.5x-\left(-\frac{5}{2}\right)=\frac{0.03+0.02x}{0.03}
To find the opposite of 0.5x-\frac{5}{2}, find the opposite of each term.
0.8x+\frac{9}{5}-0.5x+\frac{5}{2}=\frac{0.03+0.02x}{0.03}
The opposite of -\frac{5}{2} is \frac{5}{2}.
0.3x+\frac{9}{5}+\frac{5}{2}=\frac{0.03+0.02x}{0.03}
Combine 0.8x and -0.5x to get 0.3x.
0.3x+\frac{18}{10}+\frac{25}{10}=\frac{0.03+0.02x}{0.03}
Least common multiple of 5 and 2 is 10. Convert \frac{9}{5} and \frac{5}{2} to fractions with denominator 10.
0.3x+\frac{18+25}{10}=\frac{0.03+0.02x}{0.03}
Since \frac{18}{10} and \frac{25}{10} have the same denominator, add them by adding their numerators.
0.3x+\frac{43}{10}=\frac{0.03+0.02x}{0.03}
Add 18 and 25 to get 43.
0.3x+\frac{43}{10}=\frac{0.03}{0.03}+\frac{0.02x}{0.03}
Divide each term of 0.03+0.02x by 0.03 to get \frac{0.03}{0.03}+\frac{0.02x}{0.03}.
0.3x+\frac{43}{10}=1+\frac{0.02x}{0.03}
Divide 0.03 by 0.03 to get 1.
0.3x+\frac{43}{10}=1+\frac{2}{3}x
Divide 0.02x by 0.03 to get \frac{2}{3}x.
0.3x+\frac{43}{10}-\frac{2}{3}x=1
Subtract \frac{2}{3}x from both sides.
-\frac{11}{30}x+\frac{43}{10}=1
Combine 0.3x and -\frac{2}{3}x to get -\frac{11}{30}x.
-\frac{11}{30}x=1-\frac{43}{10}
Subtract \frac{43}{10} from both sides.
-\frac{11}{30}x=\frac{10}{10}-\frac{43}{10}
Convert 1 to fraction \frac{10}{10}.
-\frac{11}{30}x=\frac{10-43}{10}
Since \frac{10}{10} and \frac{43}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{11}{30}x=-\frac{33}{10}
Subtract 43 from 10 to get -33.
x=\frac{-\frac{33}{10}}{-\frac{11}{30}}
Divide both sides by -\frac{11}{30}.
x=\frac{-33}{10\left(-\frac{11}{30}\right)}
Express \frac{-\frac{33}{10}}{-\frac{11}{30}} as a single fraction.
x=\frac{-33}{-\frac{11}{3}}
Multiply 10 and -\frac{11}{30} to get -\frac{11}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}