Solve for x
x = -\frac{99}{29} = -3\frac{12}{29} \approx -3.413793103
Graph
Share
Copied to clipboard
2\times \frac{0.4x+0.9}{0.5}-2\times \frac{0.03-0.02x}{0.03}-\left(x-5\right)=0
Multiply both sides of the equation by 2.
2\times \frac{0.4x+0.9}{0.5}-2\times \frac{0.03-0.02x}{0.03}-x-\left(-5\right)=0
To find the opposite of x-5, find the opposite of each term.
2\times \frac{0.4x+0.9}{0.5}-2\times \frac{0.03-0.02x}{0.03}-x+5=0
The opposite of -5 is 5.
2\left(\frac{0.4x}{0.5}+\frac{0.9}{0.5}\right)-2\times \frac{0.03-0.02x}{0.03}-x+5=0
Divide each term of 0.4x+0.9 by 0.5 to get \frac{0.4x}{0.5}+\frac{0.9}{0.5}.
2\left(0.8x+\frac{0.9}{0.5}\right)-2\times \frac{0.03-0.02x}{0.03}-x+5=0
Divide 0.4x by 0.5 to get 0.8x.
2\left(0.8x+\frac{9}{5}\right)-2\times \frac{0.03-0.02x}{0.03}-x+5=0
Expand \frac{0.9}{0.5} by multiplying both numerator and the denominator by 10.
1.6x+2\times \frac{9}{5}-2\times \frac{0.03-0.02x}{0.03}-x+5=0
Use the distributive property to multiply 2 by 0.8x+\frac{9}{5}.
1.6x+\frac{2\times 9}{5}-2\times \frac{0.03-0.02x}{0.03}-x+5=0
Express 2\times \frac{9}{5} as a single fraction.
1.6x+\frac{18}{5}-2\times \frac{0.03-0.02x}{0.03}-x+5=0
Multiply 2 and 9 to get 18.
1.6x+\frac{18}{5}-2\left(\frac{0.03}{0.03}+\frac{-0.02x}{0.03}\right)-x+5=0
Divide each term of 0.03-0.02x by 0.03 to get \frac{0.03}{0.03}+\frac{-0.02x}{0.03}.
1.6x+\frac{18}{5}-2\left(1+\frac{-0.02x}{0.03}\right)-x+5=0
Divide 0.03 by 0.03 to get 1.
1.6x+\frac{18}{5}-2\left(1-\frac{2}{3}x\right)-x+5=0
Divide -0.02x by 0.03 to get -\frac{2}{3}x.
1.6x+\frac{18}{5}-2+\frac{4}{3}x-x+5=0
Use the distributive property to multiply -2 by 1-\frac{2}{3}x.
1.6x+\frac{18}{5}-\frac{10}{5}+\frac{4}{3}x-x+5=0
Convert 2 to fraction \frac{10}{5}.
1.6x+\frac{18-10}{5}+\frac{4}{3}x-x+5=0
Since \frac{18}{5} and \frac{10}{5} have the same denominator, subtract them by subtracting their numerators.
1.6x+\frac{8}{5}+\frac{4}{3}x-x+5=0
Subtract 10 from 18 to get 8.
\frac{44}{15}x+\frac{8}{5}-x+5=0
Combine 1.6x and \frac{4}{3}x to get \frac{44}{15}x.
\frac{29}{15}x+\frac{8}{5}+5=0
Combine \frac{44}{15}x and -x to get \frac{29}{15}x.
\frac{29}{15}x+\frac{8}{5}+\frac{25}{5}=0
Convert 5 to fraction \frac{25}{5}.
\frac{29}{15}x+\frac{8+25}{5}=0
Since \frac{8}{5} and \frac{25}{5} have the same denominator, add them by adding their numerators.
\frac{29}{15}x+\frac{33}{5}=0
Add 8 and 25 to get 33.
\frac{29}{15}x=-\frac{33}{5}
Subtract \frac{33}{5} from both sides. Anything subtracted from zero gives its negation.
x=\frac{-\frac{33}{5}}{\frac{29}{15}}
Divide both sides by \frac{29}{15}.
x=\frac{-33}{5\times \frac{29}{15}}
Express \frac{-\frac{33}{5}}{\frac{29}{15}} as a single fraction.
x=\frac{-33}{\frac{29}{3}}
Multiply 5 and \frac{29}{15} to get \frac{29}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}