Verify
false
Share
Copied to clipboard
\frac{211}{340}=\frac{1\times 10^{-5}\times 2\times 0.086}{1.6\times 10^{-3}\times 60\times 0.0955}
Expand \frac{0.211}{0.34} by multiplying both numerator and the denominator by 1000.
\frac{211}{340}=\frac{0.086\times 10^{-5}}{0.0955\times 1.6\times 30\times 10^{-3}}
Cancel out 2 in both numerator and denominator.
\frac{211}{340}=\frac{0.086}{0.0955\times 1.6\times 30\times 10^{2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{211}{340}=\frac{0.086}{0.1528\times 30\times 10^{2}}
Multiply 0.0955 and 1.6 to get 0.1528.
\frac{211}{340}=\frac{0.086}{4.584\times 10^{2}}
Multiply 0.1528 and 30 to get 4.584.
\frac{211}{340}=\frac{0.086}{4.584\times 100}
Calculate 10 to the power of 2 and get 100.
\frac{211}{340}=\frac{0.086}{458.4}
Multiply 4.584 and 100 to get 458.4.
\frac{211}{340}=\frac{86}{458400}
Expand \frac{0.086}{458.4} by multiplying both numerator and the denominator by 1000.
\frac{211}{340}=\frac{43}{229200}
Reduce the fraction \frac{86}{458400} to lowest terms by extracting and canceling out 2.
\frac{2418060}{3896400}=\frac{731}{3896400}
Least common multiple of 340 and 229200 is 3896400. Convert \frac{211}{340} and \frac{43}{229200} to fractions with denominator 3896400.
\text{false}
Compare \frac{2418060}{3896400} and \frac{731}{3896400}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}