Skip to main content
Evaluate
Tick mark Image

Share

\frac{-0.078}{\sqrt{\frac{\frac{65}{325}\times \frac{260}{325}}{284}+\frac{\frac{65}{325}\times \frac{26}{325}}{41}}\times \frac{35}{325}}
Subtract 0.268 from 0.19 to get -0.078.
\frac{-0.078}{\sqrt{\frac{\frac{1}{5}\times \frac{260}{325}}{284}+\frac{\frac{65}{325}\times \frac{26}{325}}{41}}\times \frac{35}{325}}
Reduce the fraction \frac{65}{325} to lowest terms by extracting and canceling out 65.
\frac{-0.078}{\sqrt{\frac{\frac{1}{5}\times \frac{4}{5}}{284}+\frac{\frac{65}{325}\times \frac{26}{325}}{41}}\times \frac{35}{325}}
Reduce the fraction \frac{260}{325} to lowest terms by extracting and canceling out 65.
\frac{-0.078}{\sqrt{\frac{\frac{1\times 4}{5\times 5}}{284}+\frac{\frac{65}{325}\times \frac{26}{325}}{41}}\times \frac{35}{325}}
Multiply \frac{1}{5} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-0.078}{\sqrt{\frac{\frac{4}{25}}{284}+\frac{\frac{65}{325}\times \frac{26}{325}}{41}}\times \frac{35}{325}}
Do the multiplications in the fraction \frac{1\times 4}{5\times 5}.
\frac{-0.078}{\sqrt{\frac{4}{25\times 284}+\frac{\frac{65}{325}\times \frac{26}{325}}{41}}\times \frac{35}{325}}
Express \frac{\frac{4}{25}}{284} as a single fraction.
\frac{-0.078}{\sqrt{\frac{4}{7100}+\frac{\frac{65}{325}\times \frac{26}{325}}{41}}\times \frac{35}{325}}
Multiply 25 and 284 to get 7100.
\frac{-0.078}{\sqrt{\frac{1}{1775}+\frac{\frac{65}{325}\times \frac{26}{325}}{41}}\times \frac{35}{325}}
Reduce the fraction \frac{4}{7100} to lowest terms by extracting and canceling out 4.
\frac{-0.078}{\sqrt{\frac{1}{1775}+\frac{\frac{1}{5}\times \frac{26}{325}}{41}}\times \frac{35}{325}}
Reduce the fraction \frac{65}{325} to lowest terms by extracting and canceling out 65.
\frac{-0.078}{\sqrt{\frac{1}{1775}+\frac{\frac{1}{5}\times \frac{2}{25}}{41}}\times \frac{35}{325}}
Reduce the fraction \frac{26}{325} to lowest terms by extracting and canceling out 13.
\frac{-0.078}{\sqrt{\frac{1}{1775}+\frac{\frac{1\times 2}{5\times 25}}{41}}\times \frac{35}{325}}
Multiply \frac{1}{5} times \frac{2}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{-0.078}{\sqrt{\frac{1}{1775}+\frac{\frac{2}{125}}{41}}\times \frac{35}{325}}
Do the multiplications in the fraction \frac{1\times 2}{5\times 25}.
\frac{-0.078}{\sqrt{\frac{1}{1775}+\frac{2}{125\times 41}}\times \frac{35}{325}}
Express \frac{\frac{2}{125}}{41} as a single fraction.
\frac{-0.078}{\sqrt{\frac{1}{1775}+\frac{2}{5125}}\times \frac{35}{325}}
Multiply 125 and 41 to get 5125.
\frac{-0.078}{\sqrt{\frac{205}{363875}+\frac{142}{363875}}\times \frac{35}{325}}
Least common multiple of 1775 and 5125 is 363875. Convert \frac{1}{1775} and \frac{2}{5125} to fractions with denominator 363875.
\frac{-0.078}{\sqrt{\frac{205+142}{363875}}\times \frac{35}{325}}
Since \frac{205}{363875} and \frac{142}{363875} have the same denominator, add them by adding their numerators.
\frac{-0.078}{\sqrt{\frac{347}{363875}}\times \frac{35}{325}}
Add 205 and 142 to get 347.
\frac{-0.078}{\frac{\sqrt{347}}{\sqrt{363875}}\times \frac{35}{325}}
Rewrite the square root of the division \sqrt{\frac{347}{363875}} as the division of square roots \frac{\sqrt{347}}{\sqrt{363875}}.
\frac{-0.078}{\frac{\sqrt{347}}{5\sqrt{14555}}\times \frac{35}{325}}
Factor 363875=5^{2}\times 14555. Rewrite the square root of the product \sqrt{5^{2}\times 14555} as the product of square roots \sqrt{5^{2}}\sqrt{14555}. Take the square root of 5^{2}.
\frac{-0.078}{\frac{\sqrt{347}\sqrt{14555}}{5\left(\sqrt{14555}\right)^{2}}\times \frac{35}{325}}
Rationalize the denominator of \frac{\sqrt{347}}{5\sqrt{14555}} by multiplying numerator and denominator by \sqrt{14555}.
\frac{-0.078}{\frac{\sqrt{347}\sqrt{14555}}{5\times 14555}\times \frac{35}{325}}
The square of \sqrt{14555} is 14555.
\frac{-0.078}{\frac{\sqrt{5050585}}{5\times 14555}\times \frac{35}{325}}
To multiply \sqrt{347} and \sqrt{14555}, multiply the numbers under the square root.
\frac{-0.078}{\frac{\sqrt{5050585}}{72775}\times \frac{35}{325}}
Multiply 5 and 14555 to get 72775.
\frac{-0.078}{\frac{\sqrt{5050585}}{72775}\times \frac{7}{65}}
Reduce the fraction \frac{35}{325} to lowest terms by extracting and canceling out 5.
\frac{-0.078}{\frac{\sqrt{5050585}\times 7}{72775\times 65}}
Multiply \frac{\sqrt{5050585}}{72775} times \frac{7}{65} by multiplying numerator times numerator and denominator times denominator.
\frac{-0.078\times 72775\times 65}{\sqrt{5050585}\times 7}
Divide -0.078 by \frac{\sqrt{5050585}\times 7}{72775\times 65} by multiplying -0.078 by the reciprocal of \frac{\sqrt{5050585}\times 7}{72775\times 65}.
\frac{-0.078\times 72775\times 65\sqrt{5050585}}{\left(\sqrt{5050585}\right)^{2}\times 7}
Rationalize the denominator of \frac{-0.078\times 72775\times 65}{\sqrt{5050585}\times 7} by multiplying numerator and denominator by \sqrt{5050585}.
\frac{-0.078\times 72775\times 65\sqrt{5050585}}{5050585\times 7}
The square of \sqrt{5050585} is 5050585.
\frac{-5676.45\times 65\sqrt{5050585}}{5050585\times 7}
Multiply -0.078 and 72775 to get -5676.45.
\frac{-368969.25\sqrt{5050585}}{5050585\times 7}
Multiply -5676.45 and 65 to get -368969.25.
\frac{-368969.25\sqrt{5050585}}{35354095}
Multiply 5050585 and 7 to get 35354095.
-\frac{507}{48580}\sqrt{5050585}
Divide -368969.25\sqrt{5050585} by 35354095 to get -\frac{507}{48580}\sqrt{5050585}.