\frac { 0.05 \times 0.75 } { 1 - 0.2 \% }
Evaluate
\frac{75}{1996}\approx 0.03757515
Factor
\frac{3 \cdot 5 ^ {2}}{499 \cdot 2 ^ {2}} = 0.037575150300601205
Share
Copied to clipboard
\frac{0.0375}{1-\frac{0.2}{100}}
Multiply 0.05 and 0.75 to get 0.0375.
\frac{0.0375}{1-\frac{2}{1000}}
Expand \frac{0.2}{100} by multiplying both numerator and the denominator by 10.
\frac{0.0375}{1-\frac{1}{500}}
Reduce the fraction \frac{2}{1000} to lowest terms by extracting and canceling out 2.
\frac{0.0375}{\frac{500}{500}-\frac{1}{500}}
Convert 1 to fraction \frac{500}{500}.
\frac{0.0375}{\frac{500-1}{500}}
Since \frac{500}{500} and \frac{1}{500} have the same denominator, subtract them by subtracting their numerators.
\frac{0.0375}{\frac{499}{500}}
Subtract 1 from 500 to get 499.
0.0375\times \frac{500}{499}
Divide 0.0375 by \frac{499}{500} by multiplying 0.0375 by the reciprocal of \frac{499}{500}.
\frac{3}{80}\times \frac{500}{499}
Convert decimal number 0.0375 to fraction \frac{375}{10000}. Reduce the fraction \frac{375}{10000} to lowest terms by extracting and canceling out 125.
\frac{3\times 500}{80\times 499}
Multiply \frac{3}{80} times \frac{500}{499} by multiplying numerator times numerator and denominator times denominator.
\frac{1500}{39920}
Do the multiplications in the fraction \frac{3\times 500}{80\times 499}.
\frac{75}{1996}
Reduce the fraction \frac{1500}{39920} to lowest terms by extracting and canceling out 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}