Solve for x
x=\frac{15}{176}\approx 0.085227273
Graph
Share
Copied to clipboard
2\times \frac{0.02x}{0.3}+2=2\times \frac{0.18x+0.18}{0.12}-\left(1.5-3x\right)
Multiply both sides of the equation by 2.
2\times \frac{1}{15}x+2=2\times \frac{0.18x+0.18}{0.12}-\left(1.5-3x\right)
Divide 0.02x by 0.3 to get \frac{1}{15}x.
\frac{2}{15}x+2=2\times \frac{0.18x+0.18}{0.12}-\left(1.5-3x\right)
Multiply 2 and \frac{1}{15} to get \frac{2}{15}.
\frac{2}{15}x+2=2\times \frac{0.18x+0.18}{0.12}-1.5-\left(-3x\right)
To find the opposite of 1.5-3x, find the opposite of each term.
\frac{2}{15}x+2=2\times \frac{0.18x+0.18}{0.12}-1.5+3x
The opposite of -3x is 3x.
\frac{2}{15}x+2=2\left(\frac{0.18x}{0.12}+\frac{0.18}{0.12}\right)-1.5+3x
Divide each term of 0.18x+0.18 by 0.12 to get \frac{0.18x}{0.12}+\frac{0.18}{0.12}.
\frac{2}{15}x+2=2\left(1.5x+\frac{0.18}{0.12}\right)-1.5+3x
Divide 0.18x by 0.12 to get 1.5x.
\frac{2}{15}x+2=2\left(1.5x+\frac{18}{12}\right)-1.5+3x
Expand \frac{0.18}{0.12} by multiplying both numerator and the denominator by 100.
\frac{2}{15}x+2=2\left(1.5x+\frac{3}{2}\right)-1.5+3x
Reduce the fraction \frac{18}{12} to lowest terms by extracting and canceling out 6.
\frac{2}{15}x+2=3x+2\times \frac{3}{2}-1.5+3x
Use the distributive property to multiply 2 by 1.5x+\frac{3}{2}.
\frac{2}{15}x+2=3x+3-1.5+3x
Cancel out 2 and 2.
\frac{2}{15}x+2=3x+1.5+3x
Subtract 1.5 from 3 to get 1.5.
\frac{2}{15}x+2=6x+1.5
Combine 3x and 3x to get 6x.
\frac{2}{15}x+2-6x=1.5
Subtract 6x from both sides.
-\frac{88}{15}x+2=1.5
Combine \frac{2}{15}x and -6x to get -\frac{88}{15}x.
-\frac{88}{15}x=1.5-2
Subtract 2 from both sides.
-\frac{88}{15}x=-0.5
Subtract 2 from 1.5 to get -0.5.
x=\frac{-0.5}{-\frac{88}{15}}
Divide both sides by -\frac{88}{15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}