\frac { 0,9 } { \frac { 5 } { 6 } - \frac { 1 } { 12 } }
Evaluate
1,2
Factor
\frac{2 \cdot 3}{5} = 1\frac{1}{5} = 1.2
Share
Copied to clipboard
\frac{0,9}{\frac{10}{12}-\frac{1}{12}}
Least common multiple of 6 and 12 is 12. Convert \frac{5}{6} and \frac{1}{12} to fractions with denominator 12.
\frac{0,9}{\frac{10-1}{12}}
Since \frac{10}{12} and \frac{1}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{0,9}{\frac{9}{12}}
Subtract 1 from 10 to get 9.
\frac{0,9}{\frac{3}{4}}
Reduce the fraction \frac{9}{12} to lowest terms by extracting and canceling out 3.
0,9\times \frac{4}{3}
Divide 0,9 by \frac{3}{4} by multiplying 0,9 by the reciprocal of \frac{3}{4}.
\frac{9}{10}\times \frac{4}{3}
Convert decimal number 0,9 to fraction \frac{9}{10}.
\frac{9\times 4}{10\times 3}
Multiply \frac{9}{10} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{36}{30}
Do the multiplications in the fraction \frac{9\times 4}{10\times 3}.
\frac{6}{5}
Reduce the fraction \frac{36}{30} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}