\frac { 0,4 } { 82 } + 7.5 \%
Evaluate
\frac{131}{1640}\approx 0.079878049
Factor
\frac{131}{5 \cdot 41 \cdot 2 ^ {3}} = 0.0798780487804878
Share
Copied to clipboard
\frac{4}{820}+\frac{7.5}{100}
Expand \frac{0.4}{82} by multiplying both numerator and the denominator by 10.
\frac{1}{205}+\frac{7.5}{100}
Reduce the fraction \frac{4}{820} to lowest terms by extracting and canceling out 4.
\frac{1}{205}+\frac{75}{1000}
Expand \frac{7.5}{100} by multiplying both numerator and the denominator by 10.
\frac{1}{205}+\frac{3}{40}
Reduce the fraction \frac{75}{1000} to lowest terms by extracting and canceling out 25.
\frac{8}{1640}+\frac{123}{1640}
Least common multiple of 205 and 40 is 1640. Convert \frac{1}{205} and \frac{3}{40} to fractions with denominator 1640.
\frac{8+123}{1640}
Since \frac{8}{1640} and \frac{123}{1640} have the same denominator, add them by adding their numerators.
\frac{131}{1640}
Add 8 and 123 to get 131.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}