\frac { 0,4 \cdot ( \frac { - 1 } { 2 } ) + ( \frac { 5 } { 6 } ) ^ { - 2 } } { ( \frac { 1 } { 2 ^ { - 1 } } ) ^ { - 1 } } + ( \frac { 1,134 \cdot 10 ^ { - 6 } } { 5,67 \cdot 10 ^ { - 7 } } ) \cdot ( - 0,1 ) ^ { 2 } - ( \frac { 1 - \frac { 1 } { 2 } } { ( \frac { - 1 } { 4 } ) \cdot ( - 2 ) } ) ^ { - 1 } =
Evaluate
1,5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\frac{0,4\left(-\frac{1}{2}\right)+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1,134\times 10^{-6}}{5,67\times 10^{-7}}\left(-0,1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}\left(-2\right)}\right)^{-1}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{-\frac{1}{5}+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1,134\times 10^{-6}}{5,67\times 10^{-7}}\left(-0,1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}\left(-2\right)}\right)^{-1}
Multiply 0,4 and -\frac{1}{2} to get -\frac{1}{5}.
\frac{-\frac{1}{5}+\frac{36}{25}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1,134\times 10^{-6}}{5,67\times 10^{-7}}\left(-0,1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}\left(-2\right)}\right)^{-1}
Calculate \frac{5}{6} to the power of -2 and get \frac{36}{25}.
\frac{\frac{31}{25}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1,134\times 10^{-6}}{5,67\times 10^{-7}}\left(-0,1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}\left(-2\right)}\right)^{-1}
Add -\frac{1}{5} and \frac{36}{25} to get \frac{31}{25}.
\frac{\frac{31}{25}}{\left(\frac{1}{\frac{1}{2}}\right)^{-1}}+\frac{1,134\times 10^{-6}}{5,67\times 10^{-7}}\left(-0,1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}\left(-2\right)}\right)^{-1}
Calculate 2 to the power of -1 and get \frac{1}{2}.
\frac{\frac{31}{25}}{\left(1\times 2\right)^{-1}}+\frac{1,134\times 10^{-6}}{5,67\times 10^{-7}}\left(-0,1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}\left(-2\right)}\right)^{-1}
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
\frac{\frac{31}{25}}{2^{-1}}+\frac{1,134\times 10^{-6}}{5,67\times 10^{-7}}\left(-0,1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}\left(-2\right)}\right)^{-1}
Multiply 1 and 2 to get 2.
\frac{\frac{31}{25}}{\frac{1}{2}}+\frac{1,134\times 10^{-6}}{5,67\times 10^{-7}}\left(-0,1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}\left(-2\right)}\right)^{-1}
Calculate 2 to the power of -1 and get \frac{1}{2}.
\frac{31}{25}\times 2+\frac{1,134\times 10^{-6}}{5,67\times 10^{-7}}\left(-0,1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}\left(-2\right)}\right)^{-1}
Divide \frac{31}{25} by \frac{1}{2} by multiplying \frac{31}{25} by the reciprocal of \frac{1}{2}.
\frac{62}{25}+\frac{1,134\times 10^{-6}}{5,67\times 10^{-7}}\left(-0,1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}\left(-2\right)}\right)^{-1}
Multiply \frac{31}{25} and 2 to get \frac{62}{25}.
\frac{62}{25}+\frac{1,134\times 10^{1}}{5,67}\left(-0,1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}\left(-2\right)}\right)^{-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{62}{25}+\frac{1,134\times 10}{5,67}\left(-0,1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}\left(-2\right)}\right)^{-1}
Calculate 10 to the power of 1 and get 10.
\frac{62}{25}+\frac{11,34}{5,67}\left(-0,1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}\left(-2\right)}\right)^{-1}
Multiply 1,134 and 10 to get 11,34.
\frac{62}{25}+\frac{1134}{567}\left(-0,1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}\left(-2\right)}\right)^{-1}
Expand \frac{11,34}{5,67} by multiplying both numerator and the denominator by 100.
\frac{62}{25}+2\left(-0,1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}\left(-2\right)}\right)^{-1}
Divide 1134 by 567 to get 2.
\frac{62}{25}+2\times 0,01-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}\left(-2\right)}\right)^{-1}
Calculate -0,1 to the power of 2 and get 0,01.
\frac{62}{25}+0,02-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}\left(-2\right)}\right)^{-1}
Multiply 2 and 0,01 to get 0,02.
\frac{5}{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}\left(-2\right)}\right)^{-1}
Add \frac{62}{25} and 0,02 to get \frac{5}{2}.
\frac{5}{2}-\left(\frac{\frac{1}{2}}{\frac{-1}{4}\left(-2\right)}\right)^{-1}
Subtract \frac{1}{2} from 1 to get \frac{1}{2}.
\frac{5}{2}-\left(\frac{\frac{1}{2}}{-\frac{1}{4}\left(-2\right)}\right)^{-1}
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
\frac{5}{2}-\left(\frac{\frac{1}{2}}{\frac{1}{2}}\right)^{-1}
Multiply -\frac{1}{4} and -2 to get \frac{1}{2}.
\frac{5}{2}-1^{-1}
Divide \frac{1}{2} by \frac{1}{2} to get 1.
\frac{5}{2}-1
Calculate 1 to the power of -1 and get 1.
\frac{3}{2}
Subtract 1 from \frac{5}{2} to get \frac{3}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}