\frac { 0,38 \cdot 0,17 \cdot 2 \frac { 3 } { 15 } \cdot 2,7 } { 5,1 \cdot 3 \frac { 4 } { 5 } \cdot 0,064 } =
Evaluate
0,309375
Factor
\frac{11 \cdot 3 ^ {2}}{5 \cdot 2 ^ {6}} = 0.309375
Share
Copied to clipboard
\frac{0,0646\times \frac{2\times 15+3}{15}\times 2,7}{5,1\times \frac{3\times 5+4}{5}\times 0,064}
Multiply 0,38 and 0,17 to get 0,0646.
\frac{0,0646\times \frac{30+3}{15}\times 2,7}{5,1\times \frac{3\times 5+4}{5}\times 0,064}
Multiply 2 and 15 to get 30.
\frac{0,0646\times \frac{33}{15}\times 2,7}{5,1\times \frac{3\times 5+4}{5}\times 0,064}
Add 30 and 3 to get 33.
\frac{0,0646\times \frac{11}{5}\times 2,7}{5,1\times \frac{3\times 5+4}{5}\times 0,064}
Reduce the fraction \frac{33}{15} to lowest terms by extracting and canceling out 3.
\frac{\frac{323}{5000}\times \frac{11}{5}\times 2,7}{5,1\times \frac{3\times 5+4}{5}\times 0,064}
Convert decimal number 0,0646 to fraction \frac{646}{10000}. Reduce the fraction \frac{646}{10000} to lowest terms by extracting and canceling out 2.
\frac{\frac{323\times 11}{5000\times 5}\times 2,7}{5,1\times \frac{3\times 5+4}{5}\times 0,064}
Multiply \frac{323}{5000} times \frac{11}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{3553}{25000}\times 2,7}{5,1\times \frac{3\times 5+4}{5}\times 0,064}
Do the multiplications in the fraction \frac{323\times 11}{5000\times 5}.
\frac{\frac{3553}{25000}\times \frac{27}{10}}{5,1\times \frac{3\times 5+4}{5}\times 0,064}
Convert decimal number 2,7 to fraction \frac{27}{10}.
\frac{\frac{3553\times 27}{25000\times 10}}{5,1\times \frac{3\times 5+4}{5}\times 0,064}
Multiply \frac{3553}{25000} times \frac{27}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{95931}{250000}}{5,1\times \frac{3\times 5+4}{5}\times 0,064}
Do the multiplications in the fraction \frac{3553\times 27}{25000\times 10}.
\frac{\frac{95931}{250000}}{5,1\times \frac{15+4}{5}\times 0,064}
Multiply 3 and 5 to get 15.
\frac{\frac{95931}{250000}}{5,1\times \frac{19}{5}\times 0,064}
Add 15 and 4 to get 19.
\frac{\frac{95931}{250000}}{\frac{51}{10}\times \frac{19}{5}\times 0,064}
Convert decimal number 5,1 to fraction \frac{51}{10}.
\frac{\frac{95931}{250000}}{\frac{51\times 19}{10\times 5}\times 0,064}
Multiply \frac{51}{10} times \frac{19}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{95931}{250000}}{\frac{969}{50}\times 0,064}
Do the multiplications in the fraction \frac{51\times 19}{10\times 5}.
\frac{\frac{95931}{250000}}{\frac{969}{50}\times \frac{8}{125}}
Convert decimal number 0,064 to fraction \frac{64}{1000}. Reduce the fraction \frac{64}{1000} to lowest terms by extracting and canceling out 8.
\frac{\frac{95931}{250000}}{\frac{969\times 8}{50\times 125}}
Multiply \frac{969}{50} times \frac{8}{125} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{95931}{250000}}{\frac{7752}{6250}}
Do the multiplications in the fraction \frac{969\times 8}{50\times 125}.
\frac{\frac{95931}{250000}}{\frac{3876}{3125}}
Reduce the fraction \frac{7752}{6250} to lowest terms by extracting and canceling out 2.
\frac{95931}{250000}\times \frac{3125}{3876}
Divide \frac{95931}{250000} by \frac{3876}{3125} by multiplying \frac{95931}{250000} by the reciprocal of \frac{3876}{3125}.
\frac{95931\times 3125}{250000\times 3876}
Multiply \frac{95931}{250000} times \frac{3125}{3876} by multiplying numerator times numerator and denominator times denominator.
\frac{299784375}{969000000}
Do the multiplications in the fraction \frac{95931\times 3125}{250000\times 3876}.
\frac{99}{320}
Reduce the fraction \frac{299784375}{969000000} to lowest terms by extracting and canceling out 3028125.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}