\frac { 0,32 \cdot \frac { 3 } { 40 } + \frac { 3 } { 5 } } { 0,2 : 2 \frac { 1 } { 2 } - 1 \frac { 1 } { 5 } } =
Evaluate
-\frac{39}{70}\approx -0,557142857
Factor
-\frac{39}{70} = -0.5571428571428572
Share
Copied to clipboard
\frac{\frac{8}{25}\times \frac{3}{40}+\frac{3}{5}}{\frac{0,2}{\frac{2\times 2+1}{2}}-\frac{1\times 5+1}{5}}
Convert decimal number 0,32 to fraction \frac{32}{100}. Reduce the fraction \frac{32}{100} to lowest terms by extracting and canceling out 4.
\frac{\frac{8\times 3}{25\times 40}+\frac{3}{5}}{\frac{0,2}{\frac{2\times 2+1}{2}}-\frac{1\times 5+1}{5}}
Multiply \frac{8}{25} times \frac{3}{40} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{24}{1000}+\frac{3}{5}}{\frac{0,2}{\frac{2\times 2+1}{2}}-\frac{1\times 5+1}{5}}
Do the multiplications in the fraction \frac{8\times 3}{25\times 40}.
\frac{\frac{3}{125}+\frac{3}{5}}{\frac{0,2}{\frac{2\times 2+1}{2}}-\frac{1\times 5+1}{5}}
Reduce the fraction \frac{24}{1000} to lowest terms by extracting and canceling out 8.
\frac{\frac{3}{125}+\frac{75}{125}}{\frac{0,2}{\frac{2\times 2+1}{2}}-\frac{1\times 5+1}{5}}
Least common multiple of 125 and 5 is 125. Convert \frac{3}{125} and \frac{3}{5} to fractions with denominator 125.
\frac{\frac{3+75}{125}}{\frac{0,2}{\frac{2\times 2+1}{2}}-\frac{1\times 5+1}{5}}
Since \frac{3}{125} and \frac{75}{125} have the same denominator, add them by adding their numerators.
\frac{\frac{78}{125}}{\frac{0,2}{\frac{2\times 2+1}{2}}-\frac{1\times 5+1}{5}}
Add 3 and 75 to get 78.
\frac{\frac{78}{125}}{\frac{0,2\times 2}{2\times 2+1}-\frac{1\times 5+1}{5}}
Divide 0,2 by \frac{2\times 2+1}{2} by multiplying 0,2 by the reciprocal of \frac{2\times 2+1}{2}.
\frac{\frac{78}{125}}{\frac{0,4}{2\times 2+1}-\frac{1\times 5+1}{5}}
Multiply 0,2 and 2 to get 0,4.
\frac{\frac{78}{125}}{\frac{0,4}{4+1}-\frac{1\times 5+1}{5}}
Multiply 2 and 2 to get 4.
\frac{\frac{78}{125}}{\frac{0,4}{5}-\frac{1\times 5+1}{5}}
Add 4 and 1 to get 5.
\frac{\frac{78}{125}}{\frac{4}{50}-\frac{1\times 5+1}{5}}
Expand \frac{0,4}{5} by multiplying both numerator and the denominator by 10.
\frac{\frac{78}{125}}{\frac{2}{25}-\frac{1\times 5+1}{5}}
Reduce the fraction \frac{4}{50} to lowest terms by extracting and canceling out 2.
\frac{\frac{78}{125}}{\frac{2}{25}-\frac{5+1}{5}}
Multiply 1 and 5 to get 5.
\frac{\frac{78}{125}}{\frac{2}{25}-\frac{6}{5}}
Add 5 and 1 to get 6.
\frac{\frac{78}{125}}{\frac{2}{25}-\frac{30}{25}}
Least common multiple of 25 and 5 is 25. Convert \frac{2}{25} and \frac{6}{5} to fractions with denominator 25.
\frac{\frac{78}{125}}{\frac{2-30}{25}}
Since \frac{2}{25} and \frac{30}{25} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{78}{125}}{-\frac{28}{25}}
Subtract 30 from 2 to get -28.
\frac{78}{125}\left(-\frac{25}{28}\right)
Divide \frac{78}{125} by -\frac{28}{25} by multiplying \frac{78}{125} by the reciprocal of -\frac{28}{25}.
\frac{78\left(-25\right)}{125\times 28}
Multiply \frac{78}{125} times -\frac{25}{28} by multiplying numerator times numerator and denominator times denominator.
\frac{-1950}{3500}
Do the multiplications in the fraction \frac{78\left(-25\right)}{125\times 28}.
-\frac{39}{70}
Reduce the fraction \frac{-1950}{3500} to lowest terms by extracting and canceling out 50.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}