Solve for x
x=-\frac{1}{11}\approx -0.090909091
Graph
Share
Copied to clipboard
0-\left(x+1\right)\times 6=\left(x-1\right)\times 5
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x^{2}-1,x-1,x+1.
0-\left(6x+6\right)=\left(x-1\right)\times 5
Use the distributive property to multiply x+1 by 6.
0-6x-6=\left(x-1\right)\times 5
To find the opposite of 6x+6, find the opposite of each term.
-6-6x=\left(x-1\right)\times 5
Subtract 6 from 0 to get -6.
-6-6x=5x-5
Use the distributive property to multiply x-1 by 5.
-6-6x-5x=-5
Subtract 5x from both sides.
-6-11x=-5
Combine -6x and -5x to get -11x.
-11x=-5+6
Add 6 to both sides.
-11x=1
Add -5 and 6 to get 1.
x=\frac{1}{-11}
Divide both sides by -11.
x=-\frac{1}{11}
Fraction \frac{1}{-11} can be rewritten as -\frac{1}{11} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}