Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{0\times 5\sqrt{3}}{\sqrt{12}}+\frac{\sqrt{108}}{\sqrt{147}}-\sqrt{48}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\frac{0\sqrt{3}}{\sqrt{12}}+\frac{\sqrt{108}}{\sqrt{147}}-\sqrt{48}
Multiply 0 and 5 to get 0.
\frac{0}{\sqrt{12}}+\frac{\sqrt{108}}{\sqrt{147}}-\sqrt{48}
Anything times zero gives zero.
\frac{0}{2\sqrt{3}}+\frac{\sqrt{108}}{\sqrt{147}}-\sqrt{48}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
0+\frac{\sqrt{108}}{\sqrt{147}}-\sqrt{48}
Zero divided by any non-zero term gives zero.
0+\frac{6\sqrt{3}}{\sqrt{147}}-\sqrt{48}
Factor 108=6^{2}\times 3. Rewrite the square root of the product \sqrt{6^{2}\times 3} as the product of square roots \sqrt{6^{2}}\sqrt{3}. Take the square root of 6^{2}.
0+\frac{6\sqrt{3}}{7\sqrt{3}}-\sqrt{48}
Factor 147=7^{2}\times 3. Rewrite the square root of the product \sqrt{7^{2}\times 3} as the product of square roots \sqrt{7^{2}}\sqrt{3}. Take the square root of 7^{2}.
0+\frac{6}{7}-\sqrt{48}
Cancel out \sqrt{3} in both numerator and denominator.
\frac{6}{7}-\sqrt{48}
Add 0 and \frac{6}{7} to get \frac{6}{7}.
\frac{6}{7}-4\sqrt{3}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.