Solve for x
x = \frac{32}{21} = 1\frac{11}{21} \approx 1.523809524
Graph
Share
Copied to clipboard
0^{2}-6x+8=24\left(-2x+3\right)
Variable x cannot be equal to \frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by 3\left(-2x+3\right).
0-6x+8=24\left(-2x+3\right)
Calculate 0 to the power of 2 and get 0.
8-6x=24\left(-2x+3\right)
Add 0 and 8 to get 8.
8-6x=-48x+72
Use the distributive property to multiply 24 by -2x+3.
8-6x+48x=72
Add 48x to both sides.
8+42x=72
Combine -6x and 48x to get 42x.
42x=72-8
Subtract 8 from both sides.
42x=64
Subtract 8 from 72 to get 64.
x=\frac{64}{42}
Divide both sides by 42.
x=\frac{32}{21}
Reduce the fraction \frac{64}{42} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}