Evaluate
\frac{2h}{c}
Expand
\frac{2h}{c}
Share
Copied to clipboard
\frac{h}{\frac{2a+c}{2}-a}
Anything plus zero gives itself.
\frac{h}{\frac{2a+c}{2}-\frac{2a}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{2}{2}.
\frac{h}{\frac{2a+c-2a}{2}}
Since \frac{2a+c}{2} and \frac{2a}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{h}{\frac{c}{2}}
Combine like terms in 2a+c-2a.
\frac{h\times 2}{c}
Divide h by \frac{c}{2} by multiplying h by the reciprocal of \frac{c}{2}.
\frac{h}{\frac{2a+c}{2}-a}
Anything plus zero gives itself.
\frac{h}{\frac{2a+c}{2}-\frac{2a}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{2}{2}.
\frac{h}{\frac{2a+c-2a}{2}}
Since \frac{2a+c}{2} and \frac{2a}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{h}{\frac{c}{2}}
Combine like terms in 2a+c-2a.
\frac{h\times 2}{c}
Divide h by \frac{c}{2} by multiplying h by the reciprocal of \frac{c}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}