Solve for x
x\geq 6
Graph
Share
Copied to clipboard
2\left(-x\right)+10\leq 3x-20
Multiply both sides of the equation by 10, the least common multiple of 5,10. Since 10 is positive, the inequality direction remains the same.
2\left(-x\right)+10-3x\leq -20
Subtract 3x from both sides.
2\left(-x\right)-3x\leq -20-10
Subtract 10 from both sides.
2\left(-x\right)-3x\leq -30
Subtract 10 from -20 to get -30.
-2x-3x\leq -30
Multiply 2 and -1 to get -2.
-5x\leq -30
Combine -2x and -3x to get -5x.
x\geq \frac{-30}{-5}
Divide both sides by -5. Since -5 is negative, the inequality direction is changed.
x\geq 6
Divide -30 by -5 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}