Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-x^{4}}{-x}+\frac{x\left(x+1\right)\left(x-1\right)^{2}\left(-x^{2}-1\right)\left(-x^{2}-x-1\right)}{x\left(x-1\right)\left(-x-1\right)}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Factor the expressions that are not already factored in \frac{\left(1-x^{4}\right)\left(x-x^{4}\right)}{x-x^{3}}.
\frac{-x^{4}}{-x}+\frac{-x\left(-x-1\right)\left(x-1\right)^{2}\left(-x^{2}-1\right)\left(-x^{2}-x-1\right)}{x\left(x-1\right)\left(-x-1\right)}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Extract the negative sign in 1+x.
\frac{-x^{4}}{-x}-\left(x-1\right)\left(-x^{2}-1\right)\left(-x^{2}-x-1\right)+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Cancel out x\left(x-1\right)\left(-x-1\right) in both numerator and denominator.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+x^{2}+1+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Expand the expression.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+x^{2}+1+\frac{x\left(-x-1\right)\left(x+1\right)x^{2}\left(-x^{2}-1\right)\left(-x^{2}-x-1\right)\left(x-1\right)^{3}}{\left(x-1\right)\left(-x^{2}-x-1\right)x^{3}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Factor the expressions that are not already factored in \frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+x^{2}+1+\left(-x-1\right)\left(x+1\right)\left(x-1\right)^{2}\left(-x^{2}-1\right)+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Cancel out x\left(x-1\right)x^{2}\left(-x^{2}-x-1\right) in both numerator and denominator.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+x^{2}+1+x^{6}-x^{4}-x^{2}+1+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Expand the expression.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+1+x^{6}-x^{4}+1+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Combine x^{2} and -x^{2} to get 0.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+2+x^{6}-x^{4}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Add 1 and 1 to get 2.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+2+x^{6}-x^{4}+\frac{x\left(-x-1\right)\left(x+1\right)\left(-x+1\right)x^{2}\left(-x^{2}-1\right)\left(-x^{2}-x-1\right)x^{3}\left(x-1\right)^{3}}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-1\right)x^{6}}
Factor the expressions that are not already factored in \frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+2+x^{6}-x^{4}+\frac{-\left(-1\right)x\left(x-1\right)\left(x+1\right)\left(x+1\right)x^{2}\left(-x^{2}-1\right)\left(-x^{2}-x-1\right)x^{3}\left(x-1\right)^{3}}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-1\right)x^{6}}
Extract the negative sign in -1-x. Extract the negative sign in 1-x.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+2+x^{6}-x^{4}-\left(-\left(x-1\right)\left(x+1\right)\left(x-1\right)^{2}\left(-x^{2}-x-1\right)\right)
Cancel out x\left(x-1\right)\left(x+1\right)x^{2}\left(-x^{2}-1\right)x^{3} in both numerator and denominator.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+2+x^{6}-x^{4}-x^{6}+x^{5}+x^{4}-x^{2}-x+1
Expand the expression.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+2-x^{4}+x^{5}+x^{4}-x^{2}-x+1
Combine x^{6} and -x^{6} to get 0.
\frac{-x^{4}}{-x}-x^{3}+2-x^{4}+x^{4}-x^{2}-x+1
Combine -x^{5} and x^{5} to get 0.
\frac{-x^{4}}{-x}-x^{3}+2-x^{2}-x+1
Combine -x^{4} and x^{4} to get 0.
\frac{-x^{4}}{-x}-x^{3}+3-x^{2}-x
Add 2 and 1 to get 3.
\frac{-x^{4}}{-x}+\frac{\left(-x^{3}+3-x^{2}-x\right)\left(-1\right)x}{-x}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x^{3}+3-x^{2}-x times \frac{-x}{-x}.
\frac{-x^{4}+\left(-x^{3}+3-x^{2}-x\right)\left(-1\right)x}{-x}
Since \frac{-x^{4}}{-x} and \frac{\left(-x^{3}+3-x^{2}-x\right)\left(-1\right)x}{-x} have the same denominator, add them by adding their numerators.
\frac{-x^{4}+x^{4}-3x+x^{3}+x^{2}}{-x}
Do the multiplications in -x^{4}+\left(-x^{3}+3-x^{2}-x\right)\left(-1\right)x.
\frac{-3x+x^{3}+x^{2}}{-x}
Combine like terms in -x^{4}+x^{4}-3x+x^{3}+x^{2}.
\frac{x\left(x-\left(-\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)\right)}{-x}
Factor the expressions that are not already factored in \frac{-3x+x^{3}+x^{2}}{-x}.
\frac{\left(x-\left(-\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)\right)}{-1}
Cancel out x in both numerator and denominator.
-\left(x-\left(-\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)\right)
Anything divided by -1 gives its opposite.
-\left(x+\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)\left(x-\left(\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)\right)
To find the opposite of -\frac{1}{2}\sqrt{13}-\frac{1}{2}, find the opposite of each term.
-\left(x+\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)
To find the opposite of \frac{1}{2}\sqrt{13}-\frac{1}{2}, find the opposite of each term.
\left(-x-\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)
Use the distributive property to multiply -1 by x+\frac{1}{2}\sqrt{13}+\frac{1}{2}.
-x^{2}-x+\frac{1}{4}\left(\sqrt{13}\right)^{2}-\frac{1}{4}
Use the distributive property to multiply -x-\frac{1}{2}\sqrt{13}-\frac{1}{2} by x-\frac{1}{2}\sqrt{13}+\frac{1}{2} and combine like terms.
-x^{2}-x+\frac{1}{4}\times 13-\frac{1}{4}
The square of \sqrt{13} is 13.
-x^{2}-x+\frac{13}{4}-\frac{1}{4}
Multiply \frac{1}{4} and 13 to get \frac{13}{4}.
-x^{2}-x+3
Subtract \frac{1}{4} from \frac{13}{4} to get 3.
\frac{-x^{4}}{-x}+\frac{x\left(x+1\right)\left(x-1\right)^{2}\left(-x^{2}-1\right)\left(-x^{2}-x-1\right)}{x\left(x-1\right)\left(-x-1\right)}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Factor the expressions that are not already factored in \frac{\left(1-x^{4}\right)\left(x-x^{4}\right)}{x-x^{3}}.
\frac{-x^{4}}{-x}+\frac{-x\left(-x-1\right)\left(x-1\right)^{2}\left(-x^{2}-1\right)\left(-x^{2}-x-1\right)}{x\left(x-1\right)\left(-x-1\right)}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Extract the negative sign in 1+x.
\frac{-x^{4}}{-x}-\left(x-1\right)\left(-x^{2}-1\right)\left(-x^{2}-x-1\right)+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Cancel out x\left(x-1\right)\left(-x-1\right) in both numerator and denominator.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+x^{2}+1+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Expand the expression.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+x^{2}+1+\frac{x\left(-x-1\right)\left(x+1\right)x^{2}\left(-x^{2}-1\right)\left(-x^{2}-x-1\right)\left(x-1\right)^{3}}{\left(x-1\right)\left(-x^{2}-x-1\right)x^{3}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Factor the expressions that are not already factored in \frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+x^{2}+1+\left(-x-1\right)\left(x+1\right)\left(x-1\right)^{2}\left(-x^{2}-1\right)+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Cancel out x\left(x-1\right)x^{2}\left(-x^{2}-x-1\right) in both numerator and denominator.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+x^{2}+1+x^{6}-x^{4}-x^{2}+1+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Expand the expression.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+1+x^{6}-x^{4}+1+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Combine x^{2} and -x^{2} to get 0.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+2+x^{6}-x^{4}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Add 1 and 1 to get 2.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+2+x^{6}-x^{4}+\frac{x\left(-x-1\right)\left(x+1\right)\left(-x+1\right)x^{2}\left(-x^{2}-1\right)\left(-x^{2}-x-1\right)x^{3}\left(x-1\right)^{3}}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-1\right)x^{6}}
Factor the expressions that are not already factored in \frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+2+x^{6}-x^{4}+\frac{-\left(-1\right)x\left(x-1\right)\left(x+1\right)\left(x+1\right)x^{2}\left(-x^{2}-1\right)\left(-x^{2}-x-1\right)x^{3}\left(x-1\right)^{3}}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-1\right)x^{6}}
Extract the negative sign in -1-x. Extract the negative sign in 1-x.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+2+x^{6}-x^{4}-\left(-\left(x-1\right)\left(x+1\right)\left(x-1\right)^{2}\left(-x^{2}-x-1\right)\right)
Cancel out x\left(x-1\right)\left(x+1\right)x^{2}\left(-x^{2}-1\right)x^{3} in both numerator and denominator.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+2+x^{6}-x^{4}-x^{6}+x^{5}+x^{4}-x^{2}-x+1
Expand the expression.
\frac{-x^{4}}{-x}-x^{5}-x^{3}+2-x^{4}+x^{5}+x^{4}-x^{2}-x+1
Combine x^{6} and -x^{6} to get 0.
\frac{-x^{4}}{-x}-x^{3}+2-x^{4}+x^{4}-x^{2}-x+1
Combine -x^{5} and x^{5} to get 0.
\frac{-x^{4}}{-x}-x^{3}+2-x^{2}-x+1
Combine -x^{4} and x^{4} to get 0.
\frac{-x^{4}}{-x}-x^{3}+3-x^{2}-x
Add 2 and 1 to get 3.
\frac{-x^{4}}{-x}+\frac{\left(-x^{3}+3-x^{2}-x\right)\left(-1\right)x}{-x}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x^{3}+3-x^{2}-x times \frac{-x}{-x}.
\frac{-x^{4}+\left(-x^{3}+3-x^{2}-x\right)\left(-1\right)x}{-x}
Since \frac{-x^{4}}{-x} and \frac{\left(-x^{3}+3-x^{2}-x\right)\left(-1\right)x}{-x} have the same denominator, add them by adding their numerators.
\frac{-x^{4}+x^{4}-3x+x^{3}+x^{2}}{-x}
Do the multiplications in -x^{4}+\left(-x^{3}+3-x^{2}-x\right)\left(-1\right)x.
\frac{-3x+x^{3}+x^{2}}{-x}
Combine like terms in -x^{4}+x^{4}-3x+x^{3}+x^{2}.
\frac{x\left(x-\left(-\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)\right)}{-x}
Factor the expressions that are not already factored in \frac{-3x+x^{3}+x^{2}}{-x}.
\frac{\left(x-\left(-\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)\right)}{-1}
Cancel out x in both numerator and denominator.
-\left(x-\left(-\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)\right)
Anything divided by -1 gives its opposite.
-\left(x+\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)\left(x-\left(\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)\right)
To find the opposite of -\frac{1}{2}\sqrt{13}-\frac{1}{2}, find the opposite of each term.
-\left(x+\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)
To find the opposite of \frac{1}{2}\sqrt{13}-\frac{1}{2}, find the opposite of each term.
\left(-x-\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)
Use the distributive property to multiply -1 by x+\frac{1}{2}\sqrt{13}+\frac{1}{2}.
-x^{2}-x+\frac{1}{4}\left(\sqrt{13}\right)^{2}-\frac{1}{4}
Use the distributive property to multiply -x-\frac{1}{2}\sqrt{13}-\frac{1}{2} by x-\frac{1}{2}\sqrt{13}+\frac{1}{2} and combine like terms.
-x^{2}-x+\frac{1}{4}\times 13-\frac{1}{4}
The square of \sqrt{13} is 13.
-x^{2}-x+\frac{13}{4}-\frac{1}{4}
Multiply \frac{1}{4} and 13 to get \frac{13}{4}.
-x^{2}-x+3
Subtract \frac{1}{4} from \frac{13}{4} to get 3.