Solve for x
x\neq 1
Graph
Share
Copied to clipboard
-x^{3}+2x^{2}-x+5=5+\left(x-1\right)x-x^{2}\left(x-1\right)
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by x-1.
-x^{3}+2x^{2}-x+5=5+x^{2}-x-x^{2}\left(x-1\right)
Use the distributive property to multiply x-1 by x.
-x^{3}+2x^{2}-x+5=5+x^{2}-x-x^{3}+x^{2}
Use the distributive property to multiply -x^{2} by x-1.
-x^{3}+2x^{2}-x+5=5+2x^{2}-x-x^{3}
Combine x^{2} and x^{2} to get 2x^{2}.
-x^{3}+2x^{2}-x+5-5=2x^{2}-x-x^{3}
Subtract 5 from both sides.
-x^{3}+2x^{2}-x=2x^{2}-x-x^{3}
Subtract 5 from 5 to get 0.
-x^{3}+2x^{2}-x-2x^{2}=-x-x^{3}
Subtract 2x^{2} from both sides.
-x^{3}-x=-x-x^{3}
Combine 2x^{2} and -2x^{2} to get 0.
-x^{3}-x+x=-x^{3}
Add x to both sides.
-x^{3}=-x^{3}
Combine -x and x to get 0.
-x^{3}+x^{3}=0
Add x^{3} to both sides.
0=0
Combine -x^{3} and x^{3} to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{R}
This is true for any x.
x\in \mathrm{R}\setminus 1
Variable x cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}