Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-x^{2}-x+2}{-x}-\frac{1}{2}=0
Subtract \frac{1}{2} from both sides.
\frac{-2\left(-x^{2}-x+2\right)}{2x}-\frac{x}{2x}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of -x and 2 is 2x. Multiply \frac{-x^{2}-x+2}{-x} times \frac{-2}{-2}. Multiply \frac{1}{2} times \frac{x}{x}.
\frac{-2\left(-x^{2}-x+2\right)-x}{2x}=0
Since \frac{-2\left(-x^{2}-x+2\right)}{2x} and \frac{x}{2x} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+2x-4-x}{2x}=0
Do the multiplications in -2\left(-x^{2}-x+2\right)-x.
\frac{2x^{2}+x-4}{2x}=0
Combine like terms in 2x^{2}+2x-4-x.
\frac{2\left(x-\left(-\frac{1}{4}\sqrt{33}-\frac{1}{4}\right)\right)\left(x-\left(\frac{1}{4}\sqrt{33}-\frac{1}{4}\right)\right)}{2x}=0
Factor the expressions that are not already factored in \frac{2x^{2}+x-4}{2x}.
\frac{\left(x-\left(-\frac{1}{4}\sqrt{33}-\frac{1}{4}\right)\right)\left(x-\left(\frac{1}{4}\sqrt{33}-\frac{1}{4}\right)\right)}{x}=0
Cancel out 2 in both numerator and denominator.
\left(x-\left(-\frac{1}{4}\sqrt{33}-\frac{1}{4}\right)\right)\left(x-\left(\frac{1}{4}\sqrt{33}-\frac{1}{4}\right)\right)=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\left(x+\frac{1}{4}\sqrt{33}+\frac{1}{4}\right)\left(x-\left(\frac{1}{4}\sqrt{33}-\frac{1}{4}\right)\right)=0
To find the opposite of -\frac{1}{4}\sqrt{33}-\frac{1}{4}, find the opposite of each term.
\left(x+\frac{1}{4}\sqrt{33}+\frac{1}{4}\right)\left(x-\frac{1}{4}\sqrt{33}+\frac{1}{4}\right)=0
To find the opposite of \frac{1}{4}\sqrt{33}-\frac{1}{4}, find the opposite of each term.
x^{2}+\frac{1}{2}x-\frac{1}{16}\left(\sqrt{33}\right)^{2}+\frac{1}{16}=0
Use the distributive property to multiply x+\frac{1}{4}\sqrt{33}+\frac{1}{4} by x-\frac{1}{4}\sqrt{33}+\frac{1}{4} and combine like terms.
x^{2}+\frac{1}{2}x-\frac{1}{16}\times 33+\frac{1}{16}=0
The square of \sqrt{33} is 33.
x^{2}+\frac{1}{2}x-\frac{33}{16}+\frac{1}{16}=0
Multiply -\frac{1}{16} and 33 to get -\frac{33}{16}.
x^{2}+\frac{1}{2}x-2=0
Add -\frac{33}{16} and \frac{1}{16} to get -2.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{1}{2} for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-2\right)}}{2}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+8}}{2}
Multiply -4 times -2.
x=\frac{-\frac{1}{2}±\sqrt{\frac{33}{4}}}{2}
Add \frac{1}{4} to 8.
x=\frac{-\frac{1}{2}±\frac{\sqrt{33}}{2}}{2}
Take the square root of \frac{33}{4}.
x=\frac{\sqrt{33}-1}{2\times 2}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{\sqrt{33}}{2}}{2} when ± is plus. Add -\frac{1}{2} to \frac{\sqrt{33}}{2}.
x=\frac{\sqrt{33}-1}{4}
Divide \frac{-1+\sqrt{33}}{2} by 2.
x=\frac{-\sqrt{33}-1}{2\times 2}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{\sqrt{33}}{2}}{2} when ± is minus. Subtract \frac{\sqrt{33}}{2} from -\frac{1}{2}.
x=\frac{-\sqrt{33}-1}{4}
Divide \frac{-1-\sqrt{33}}{2} by 2.
x=\frac{\sqrt{33}-1}{4} x=\frac{-\sqrt{33}-1}{4}
The equation is now solved.
-2\left(-x^{2}-x+2\right)=x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of -x,2.
2x^{2}+2x-4=x
Use the distributive property to multiply -2 by -x^{2}-x+2.
2x^{2}+2x-4-x=0
Subtract x from both sides.
2x^{2}+x-4=0
Combine 2x and -x to get x.
2x^{2}+x=4
Add 4 to both sides. Anything plus zero gives itself.
\frac{2x^{2}+x}{2}=\frac{4}{2}
Divide both sides by 2.
x^{2}+\frac{1}{2}x=\frac{4}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{1}{2}x=2
Divide 4 by 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=2+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=2+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{33}{16}
Add 2 to \frac{1}{16}.
\left(x+\frac{1}{4}\right)^{2}=\frac{33}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{33}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{\sqrt{33}}{4} x+\frac{1}{4}=-\frac{\sqrt{33}}{4}
Simplify.
x=\frac{\sqrt{33}-1}{4} x=\frac{-\sqrt{33}-1}{4}
Subtract \frac{1}{4} from both sides of the equation.