Solve for x
x>-\frac{69}{7}
Graph
Share
Copied to clipboard
5\left(-x+1\right)-10<2\left(x+32\right)
Multiply both sides of the equation by 10, the least common multiple of 2,5. Since 10 is positive, the inequality direction remains the same.
5\left(-x\right)+5-10<2\left(x+32\right)
Use the distributive property to multiply 5 by -x+1.
5\left(-x\right)-5<2\left(x+32\right)
Subtract 10 from 5 to get -5.
5\left(-x\right)-5<2x+64
Use the distributive property to multiply 2 by x+32.
5\left(-x\right)-5-2x<64
Subtract 2x from both sides.
5\left(-x\right)-2x<64+5
Add 5 to both sides.
5\left(-x\right)-2x<69
Add 64 and 5 to get 69.
-5x-2x<69
Multiply 5 and -1 to get -5.
-7x<69
Combine -5x and -2x to get -7x.
x>-\frac{69}{7}
Divide both sides by -7. Since -7 is negative, the inequality direction is changed.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}