Solve for c
c=-2+\frac{10}{x}+\frac{32}{x^{2}}
x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{\sqrt{32c+89}-5}{c+2}\text{; }x=\frac{\sqrt{32c+89}+5}{c+2}\text{, }&c\neq -2\\x=-\frac{16}{5}\text{, }&c=-2\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{\sqrt{32c+89}-5}{c+2}\text{; }x=\frac{\sqrt{32c+89}+5}{c+2}\text{, }&c\neq -2\text{ and }c\geq -\frac{89}{32}\\x=-\frac{16}{5}\text{, }&c=-2\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(-c\right)x^{2}+32=2x\left(x-5\right)
Multiply both sides of the equation by 2.
\left(-c\right)x^{2}+32=2x^{2}-10x
Use the distributive property to multiply 2x by x-5.
\left(-c\right)x^{2}=2x^{2}-10x-32
Subtract 32 from both sides.
-cx^{2}=2x^{2}-10x-32
Reorder the terms.
\left(-x^{2}\right)c=2x^{2}-10x-32
The equation is in standard form.
\frac{\left(-x^{2}\right)c}{-x^{2}}=\frac{2x^{2}-10x-32}{-x^{2}}
Divide both sides by -x^{2}.
c=\frac{2x^{2}-10x-32}{-x^{2}}
Dividing by -x^{2} undoes the multiplication by -x^{2}.
c=-2+\frac{10x+32}{x^{2}}
Divide 2x^{2}-10x-32 by -x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}