Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{-a+2}{a-1}\times \frac{2a\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a^{2}-1}}
Factor the expressions that are not already factored in \frac{2a^{2}-4a}{a^{2}-4}.
\frac{\frac{-a+2}{a-1}\times \frac{2a}{a+2}}{\frac{a}{a^{2}-1}}
Cancel out a-2 in both numerator and denominator.
\frac{\frac{\left(-a+2\right)\times 2a}{\left(a-1\right)\left(a+2\right)}}{\frac{a}{a^{2}-1}}
Multiply \frac{-a+2}{a-1} times \frac{2a}{a+2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(-a+2\right)\times 2a\left(a^{2}-1\right)}{\left(a-1\right)\left(a+2\right)a}
Divide \frac{\left(-a+2\right)\times 2a}{\left(a-1\right)\left(a+2\right)} by \frac{a}{a^{2}-1} by multiplying \frac{\left(-a+2\right)\times 2a}{\left(a-1\right)\left(a+2\right)} by the reciprocal of \frac{a}{a^{2}-1}.
\frac{2\left(2-a\right)\left(a^{2}-1\right)}{\left(a-1\right)\left(a+2\right)}
Cancel out a in both numerator and denominator.
\frac{2\left(a-1\right)\left(a+1\right)\left(-a+2\right)}{\left(a-1\right)\left(a+2\right)}
Factor the expressions that are not already factored.
\frac{2\left(a+1\right)\left(-a+2\right)}{a+2}
Cancel out a-1 in both numerator and denominator.
\frac{-2a^{2}+2a+4}{a+2}
Expand the expression.
\frac{\frac{-a+2}{a-1}\times \frac{2a\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a^{2}-1}}
Factor the expressions that are not already factored in \frac{2a^{2}-4a}{a^{2}-4}.
\frac{\frac{-a+2}{a-1}\times \frac{2a}{a+2}}{\frac{a}{a^{2}-1}}
Cancel out a-2 in both numerator and denominator.
\frac{\frac{\left(-a+2\right)\times 2a}{\left(a-1\right)\left(a+2\right)}}{\frac{a}{a^{2}-1}}
Multiply \frac{-a+2}{a-1} times \frac{2a}{a+2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(-a+2\right)\times 2a\left(a^{2}-1\right)}{\left(a-1\right)\left(a+2\right)a}
Divide \frac{\left(-a+2\right)\times 2a}{\left(a-1\right)\left(a+2\right)} by \frac{a}{a^{2}-1} by multiplying \frac{\left(-a+2\right)\times 2a}{\left(a-1\right)\left(a+2\right)} by the reciprocal of \frac{a}{a^{2}-1}.
\frac{2\left(2-a\right)\left(a^{2}-1\right)}{\left(a-1\right)\left(a+2\right)}
Cancel out a in both numerator and denominator.
\frac{2\left(a-1\right)\left(a+1\right)\left(-a+2\right)}{\left(a-1\right)\left(a+2\right)}
Factor the expressions that are not already factored.
\frac{2\left(a+1\right)\left(-a+2\right)}{a+2}
Cancel out a-1 in both numerator and denominator.
\frac{-2a^{2}+2a+4}{a+2}
Expand the expression.