Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{-9\left(4-2\sqrt{2}\right)}{\left(4+2\sqrt{2}\right)\left(4-2\sqrt{2}\right)}
Rationalize the denominator of \frac{-9}{4+2\sqrt{2}} by multiplying numerator and denominator by 4-2\sqrt{2}.
\frac{-9\left(4-2\sqrt{2}\right)}{4^{2}-\left(2\sqrt{2}\right)^{2}}
Consider \left(4+2\sqrt{2}\right)\left(4-2\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-9\left(4-2\sqrt{2}\right)}{16-\left(2\sqrt{2}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{-9\left(4-2\sqrt{2}\right)}{16-2^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{-9\left(4-2\sqrt{2}\right)}{16-4\left(\sqrt{2}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{-9\left(4-2\sqrt{2}\right)}{16-4\times 2}
The square of \sqrt{2} is 2.
\frac{-9\left(4-2\sqrt{2}\right)}{16-8}
Multiply 4 and 2 to get 8.
\frac{-9\left(4-2\sqrt{2}\right)}{8}
Subtract 8 from 16 to get 8.
\frac{-36+18\sqrt{2}}{8}
Use the distributive property to multiply -9 by 4-2\sqrt{2}.