Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{-9\left(2\sqrt{5}+3\right)}{\left(2\sqrt{5}-3\right)\left(2\sqrt{5}+3\right)}
Rationalize the denominator of \frac{-9}{2\sqrt{5}-3} by multiplying numerator and denominator by 2\sqrt{5}+3.
\frac{-9\left(2\sqrt{5}+3\right)}{\left(2\sqrt{5}\right)^{2}-3^{2}}
Consider \left(2\sqrt{5}-3\right)\left(2\sqrt{5}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-9\left(2\sqrt{5}+3\right)}{2^{2}\left(\sqrt{5}\right)^{2}-3^{2}}
Expand \left(2\sqrt{5}\right)^{2}.
\frac{-9\left(2\sqrt{5}+3\right)}{4\left(\sqrt{5}\right)^{2}-3^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{-9\left(2\sqrt{5}+3\right)}{4\times 5-3^{2}}
The square of \sqrt{5} is 5.
\frac{-9\left(2\sqrt{5}+3\right)}{20-3^{2}}
Multiply 4 and 5 to get 20.
\frac{-9\left(2\sqrt{5}+3\right)}{20-9}
Calculate 3 to the power of 2 and get 9.
\frac{-9\left(2\sqrt{5}+3\right)}{11}
Subtract 9 from 20 to get 11.
\frac{-18\sqrt{5}-27}{11}
Use the distributive property to multiply -9 by 2\sqrt{5}+3.