Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-3x+2\right)\left(-9\right)-2\left(6x-5\right)=2x\times 2\left(3x-2\right)+2\left(3x-2\right)\left(-2\right)
Variable x cannot be equal to \frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by 2\left(3x-2\right), the least common multiple of -2,2-3x.
27x-18-2\left(6x-5\right)=2x\times 2\left(3x-2\right)+2\left(3x-2\right)\left(-2\right)
Use the distributive property to multiply -3x+2 by -9.
27x-18-12x+10=2x\times 2\left(3x-2\right)+2\left(3x-2\right)\left(-2\right)
Use the distributive property to multiply -2 by 6x-5.
15x-18+10=2x\times 2\left(3x-2\right)+2\left(3x-2\right)\left(-2\right)
Combine 27x and -12x to get 15x.
15x-8=2x\times 2\left(3x-2\right)+2\left(3x-2\right)\left(-2\right)
Add -18 and 10 to get -8.
15x-8=4x\left(3x-2\right)+2\left(3x-2\right)\left(-2\right)
Multiply 2 and 2 to get 4.
15x-8=12x^{2}-8x+2\left(3x-2\right)\left(-2\right)
Use the distributive property to multiply 4x by 3x-2.
15x-8=12x^{2}-8x-4\left(3x-2\right)
Multiply 2 and -2 to get -4.
15x-8=12x^{2}-8x-12x+8
Use the distributive property to multiply -4 by 3x-2.
15x-8=12x^{2}-20x+8
Combine -8x and -12x to get -20x.
15x-8-12x^{2}=-20x+8
Subtract 12x^{2} from both sides.
15x-8-12x^{2}+20x=8
Add 20x to both sides.
35x-8-12x^{2}=8
Combine 15x and 20x to get 35x.
35x-8-12x^{2}-8=0
Subtract 8 from both sides.
35x-16-12x^{2}=0
Subtract 8 from -8 to get -16.
-12x^{2}+35x-16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-35±\sqrt{35^{2}-4\left(-12\right)\left(-16\right)}}{2\left(-12\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -12 for a, 35 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-35±\sqrt{1225-4\left(-12\right)\left(-16\right)}}{2\left(-12\right)}
Square 35.
x=\frac{-35±\sqrt{1225+48\left(-16\right)}}{2\left(-12\right)}
Multiply -4 times -12.
x=\frac{-35±\sqrt{1225-768}}{2\left(-12\right)}
Multiply 48 times -16.
x=\frac{-35±\sqrt{457}}{2\left(-12\right)}
Add 1225 to -768.
x=\frac{-35±\sqrt{457}}{-24}
Multiply 2 times -12.
x=\frac{\sqrt{457}-35}{-24}
Now solve the equation x=\frac{-35±\sqrt{457}}{-24} when ± is plus. Add -35 to \sqrt{457}.
x=\frac{35-\sqrt{457}}{24}
Divide -35+\sqrt{457} by -24.
x=\frac{-\sqrt{457}-35}{-24}
Now solve the equation x=\frac{-35±\sqrt{457}}{-24} when ± is minus. Subtract \sqrt{457} from -35.
x=\frac{\sqrt{457}+35}{24}
Divide -35-\sqrt{457} by -24.
x=\frac{35-\sqrt{457}}{24} x=\frac{\sqrt{457}+35}{24}
The equation is now solved.
\left(-3x+2\right)\left(-9\right)-2\left(6x-5\right)=2x\times 2\left(3x-2\right)+2\left(3x-2\right)\left(-2\right)
Variable x cannot be equal to \frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by 2\left(3x-2\right), the least common multiple of -2,2-3x.
27x-18-2\left(6x-5\right)=2x\times 2\left(3x-2\right)+2\left(3x-2\right)\left(-2\right)
Use the distributive property to multiply -3x+2 by -9.
27x-18-12x+10=2x\times 2\left(3x-2\right)+2\left(3x-2\right)\left(-2\right)
Use the distributive property to multiply -2 by 6x-5.
15x-18+10=2x\times 2\left(3x-2\right)+2\left(3x-2\right)\left(-2\right)
Combine 27x and -12x to get 15x.
15x-8=2x\times 2\left(3x-2\right)+2\left(3x-2\right)\left(-2\right)
Add -18 and 10 to get -8.
15x-8=4x\left(3x-2\right)+2\left(3x-2\right)\left(-2\right)
Multiply 2 and 2 to get 4.
15x-8=12x^{2}-8x+2\left(3x-2\right)\left(-2\right)
Use the distributive property to multiply 4x by 3x-2.
15x-8=12x^{2}-8x-4\left(3x-2\right)
Multiply 2 and -2 to get -4.
15x-8=12x^{2}-8x-12x+8
Use the distributive property to multiply -4 by 3x-2.
15x-8=12x^{2}-20x+8
Combine -8x and -12x to get -20x.
15x-8-12x^{2}=-20x+8
Subtract 12x^{2} from both sides.
15x-8-12x^{2}+20x=8
Add 20x to both sides.
35x-8-12x^{2}=8
Combine 15x and 20x to get 35x.
35x-12x^{2}=8+8
Add 8 to both sides.
35x-12x^{2}=16
Add 8 and 8 to get 16.
-12x^{2}+35x=16
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-12x^{2}+35x}{-12}=\frac{16}{-12}
Divide both sides by -12.
x^{2}+\frac{35}{-12}x=\frac{16}{-12}
Dividing by -12 undoes the multiplication by -12.
x^{2}-\frac{35}{12}x=\frac{16}{-12}
Divide 35 by -12.
x^{2}-\frac{35}{12}x=-\frac{4}{3}
Reduce the fraction \frac{16}{-12} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{35}{12}x+\left(-\frac{35}{24}\right)^{2}=-\frac{4}{3}+\left(-\frac{35}{24}\right)^{2}
Divide -\frac{35}{12}, the coefficient of the x term, by 2 to get -\frac{35}{24}. Then add the square of -\frac{35}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{35}{12}x+\frac{1225}{576}=-\frac{4}{3}+\frac{1225}{576}
Square -\frac{35}{24} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{35}{12}x+\frac{1225}{576}=\frac{457}{576}
Add -\frac{4}{3} to \frac{1225}{576} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{35}{24}\right)^{2}=\frac{457}{576}
Factor x^{2}-\frac{35}{12}x+\frac{1225}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{35}{24}\right)^{2}}=\sqrt{\frac{457}{576}}
Take the square root of both sides of the equation.
x-\frac{35}{24}=\frac{\sqrt{457}}{24} x-\frac{35}{24}=-\frac{\sqrt{457}}{24}
Simplify.
x=\frac{\sqrt{457}+35}{24} x=\frac{35-\sqrt{457}}{24}
Add \frac{35}{24} to both sides of the equation.