Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-9+7i\right)i}{-6i^{2}}
Multiply both numerator and denominator by imaginary unit i.
\frac{\left(-9+7i\right)i}{6}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-9i+7i^{2}}{6}
Multiply -9+7i times i.
\frac{-9i+7\left(-1\right)}{6}
By definition, i^{2} is -1.
\frac{-7-9i}{6}
Do the multiplications in -9i+7\left(-1\right). Reorder the terms.
-\frac{7}{6}-\frac{3}{2}i
Divide -7-9i by 6 to get -\frac{7}{6}-\frac{3}{2}i.
Re(\frac{\left(-9+7i\right)i}{-6i^{2}})
Multiply both numerator and denominator of \frac{-9+7i}{-6i} by imaginary unit i.
Re(\frac{\left(-9+7i\right)i}{6})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-9i+7i^{2}}{6})
Multiply -9+7i times i.
Re(\frac{-9i+7\left(-1\right)}{6})
By definition, i^{2} is -1.
Re(\frac{-7-9i}{6})
Do the multiplications in -9i+7\left(-1\right). Reorder the terms.
Re(-\frac{7}{6}-\frac{3}{2}i)
Divide -7-9i by 6 to get -\frac{7}{6}-\frac{3}{2}i.
-\frac{7}{6}
The real part of -\frac{7}{6}-\frac{3}{2}i is -\frac{7}{6}.