Solve for x
x = -\frac{846}{41} = -20\frac{26}{41} \approx -20.634146341
Graph
Share
Copied to clipboard
-\frac{82}{9}x=188
Fraction \frac{-82}{9} can be rewritten as -\frac{82}{9} by extracting the negative sign.
x=188\left(-\frac{9}{82}\right)
Multiply both sides by -\frac{9}{82}, the reciprocal of -\frac{82}{9}.
x=\frac{188\left(-9\right)}{82}
Express 188\left(-\frac{9}{82}\right) as a single fraction.
x=\frac{-1692}{82}
Multiply 188 and -9 to get -1692.
x=-\frac{846}{41}
Reduce the fraction \frac{-1692}{82} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}