Solve for x
x=\frac{-y-30}{13}
Solve for y
y=-13x-30
Graph
Share
Copied to clipboard
-8x-2y=3\left(6x+20\right)
Multiply both sides of the equation by 24, the least common multiple of 24,8.
-8x-2y=18x+60
Use the distributive property to multiply 3 by 6x+20.
-8x-2y-18x=60
Subtract 18x from both sides.
-26x-2y=60
Combine -8x and -18x to get -26x.
-26x=60+2y
Add 2y to both sides.
-26x=2y+60
The equation is in standard form.
\frac{-26x}{-26}=\frac{2y+60}{-26}
Divide both sides by -26.
x=\frac{2y+60}{-26}
Dividing by -26 undoes the multiplication by -26.
x=\frac{-y-30}{13}
Divide 60+2y by -26.
-8x-2y=3\left(6x+20\right)
Multiply both sides of the equation by 24, the least common multiple of 24,8.
-8x-2y=18x+60
Use the distributive property to multiply 3 by 6x+20.
-2y=18x+60+8x
Add 8x to both sides.
-2y=26x+60
Combine 18x and 8x to get 26x.
\frac{-2y}{-2}=\frac{26x+60}{-2}
Divide both sides by -2.
y=\frac{26x+60}{-2}
Dividing by -2 undoes the multiplication by -2.
y=-13x-30
Divide 26x+60 by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}