Solve for u
u=-\frac{8}{49}\approx -0.163265306
Share
Copied to clipboard
-\frac{8}{7}=7u
Fraction \frac{-8}{7} can be rewritten as -\frac{8}{7} by extracting the negative sign.
7u=-\frac{8}{7}
Swap sides so that all variable terms are on the left hand side.
u=\frac{-\frac{8}{7}}{7}
Divide both sides by 7.
u=\frac{-8}{7\times 7}
Express \frac{-\frac{8}{7}}{7} as a single fraction.
u=\frac{-8}{49}
Multiply 7 and 7 to get 49.
u=-\frac{8}{49}
Fraction \frac{-8}{49} can be rewritten as -\frac{8}{49} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}