Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-7y^{8}\right)^{1}\times \frac{1}{35y^{3}}
Use the rules of exponents to simplify the expression.
\left(-7\right)^{1}\left(y^{8}\right)^{1}\times \frac{1}{35}\times \frac{1}{y^{3}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(-7\right)^{1}\times \frac{1}{35}\left(y^{8}\right)^{1}\times \frac{1}{y^{3}}
Use the Commutative Property of Multiplication.
\left(-7\right)^{1}\times \frac{1}{35}y^{8}y^{3\left(-1\right)}
To raise a power to another power, multiply the exponents.
\left(-7\right)^{1}\times \frac{1}{35}y^{8}y^{-3}
Multiply 3 times -1.
\left(-7\right)^{1}\times \frac{1}{35}y^{8-3}
To multiply powers of the same base, add their exponents.
\left(-7\right)^{1}\times \frac{1}{35}y^{5}
Add the exponents 8 and -3.
-7\times \frac{1}{35}y^{5}
Raise -7 to the power 1.
-\frac{1}{5}y^{5}
Multiply -7 times \frac{1}{35}.
\frac{\left(-7\right)^{1}y^{8}}{35^{1}y^{3}}
Use the rules of exponents to simplify the expression.
\frac{\left(-7\right)^{1}y^{8-3}}{35^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(-7\right)^{1}y^{5}}{35^{1}}
Subtract 3 from 8.
-\frac{1}{5}y^{5}
Reduce the fraction \frac{-7}{35} to lowest terms by extracting and canceling out 7.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(-\frac{7}{35}\right)y^{8-3})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}y}(-\frac{1}{5}y^{5})
Do the arithmetic.
5\left(-\frac{1}{5}\right)y^{5-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-y^{4}
Do the arithmetic.