Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-7i\left(2-5i\right)}{\left(2+5i\right)\left(2-5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2-5i.
\frac{-7i\left(2-5i\right)}{2^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-7i\left(2-5i\right)}{29}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-7i\times 2-7\left(-5\right)i^{2}}{29}
Multiply -7i times 2-5i.
\frac{-7i\times 2-7\left(-5\right)\left(-1\right)}{29}
By definition, i^{2} is -1.
\frac{-35-14i}{29}
Do the multiplications in -7i\times 2-7\left(-5\right)\left(-1\right). Reorder the terms.
-\frac{35}{29}-\frac{14}{29}i
Divide -35-14i by 29 to get -\frac{35}{29}-\frac{14}{29}i.
Re(\frac{-7i\left(2-5i\right)}{\left(2+5i\right)\left(2-5i\right)})
Multiply both numerator and denominator of \frac{-7i}{2+5i} by the complex conjugate of the denominator, 2-5i.
Re(\frac{-7i\left(2-5i\right)}{2^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{-7i\left(2-5i\right)}{29})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-7i\times 2-7\left(-5\right)i^{2}}{29})
Multiply -7i times 2-5i.
Re(\frac{-7i\times 2-7\left(-5\right)\left(-1\right)}{29})
By definition, i^{2} is -1.
Re(\frac{-35-14i}{29})
Do the multiplications in -7i\times 2-7\left(-5\right)\left(-1\right). Reorder the terms.
Re(-\frac{35}{29}-\frac{14}{29}i)
Divide -35-14i by 29 to get -\frac{35}{29}-\frac{14}{29}i.
-\frac{35}{29}
The real part of -\frac{35}{29}-\frac{14}{29}i is -\frac{35}{29}.