Evaluate
\frac{1}{x^{2}-1}
Differentiate w.r.t. x
-\frac{2x}{\left(x^{2}-1\right)^{2}}
Graph
Quiz
Polynomial
5 problems similar to:
\frac { - 7 } { x ^ { 2 } - 1 } - \frac { 8 } { 1 - x ^ { 2 } }
Share
Copied to clipboard
\frac{-7}{\left(x-1\right)\left(x+1\right)}-\frac{8}{\left(x-1\right)\left(-x-1\right)}
Factor x^{2}-1. Factor 1-x^{2}.
\frac{-7}{\left(x-1\right)\left(x+1\right)}-\frac{8\left(-1\right)}{\left(x-1\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and \left(x-1\right)\left(-x-1\right) is \left(x-1\right)\left(x+1\right). Multiply \frac{8}{\left(x-1\right)\left(-x-1\right)} times \frac{-1}{-1}.
\frac{-7-8\left(-1\right)}{\left(x-1\right)\left(x+1\right)}
Since \frac{-7}{\left(x-1\right)\left(x+1\right)} and \frac{8\left(-1\right)}{\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-7+8}{\left(x-1\right)\left(x+1\right)}
Do the multiplications in -7-8\left(-1\right).
\frac{1}{\left(x-1\right)\left(x+1\right)}
Do the calculations in -7+8.
\frac{1}{x^{2}-1}
Expand \left(x-1\right)\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-7}{\left(x-1\right)\left(x+1\right)}-\frac{8}{\left(x-1\right)\left(-x-1\right)})
Factor x^{2}-1. Factor 1-x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-7}{\left(x-1\right)\left(x+1\right)}-\frac{8\left(-1\right)}{\left(x-1\right)\left(x+1\right)})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and \left(x-1\right)\left(-x-1\right) is \left(x-1\right)\left(x+1\right). Multiply \frac{8}{\left(x-1\right)\left(-x-1\right)} times \frac{-1}{-1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-7-8\left(-1\right)}{\left(x-1\right)\left(x+1\right)})
Since \frac{-7}{\left(x-1\right)\left(x+1\right)} and \frac{8\left(-1\right)}{\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-7+8}{\left(x-1\right)\left(x+1\right)})
Do the multiplications in -7-8\left(-1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\left(x-1\right)\left(x+1\right)})
Do the calculations in -7+8.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x^{2}-1})
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
-\left(x^{2}-1\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-1)
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{2}-1\right)^{-2}\times 2x^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-2x^{1}\left(x^{2}-1\right)^{-2}
Simplify.
-2x\left(x^{2}-1\right)^{-2}
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}