Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{-7\left(2\sqrt{5}-1\right)}{\left(2\sqrt{5}+1\right)\left(2\sqrt{5}-1\right)}
Rationalize the denominator of \frac{-7}{2\sqrt{5}+1} by multiplying numerator and denominator by 2\sqrt{5}-1.
\frac{-7\left(2\sqrt{5}-1\right)}{\left(2\sqrt{5}\right)^{2}-1^{2}}
Consider \left(2\sqrt{5}+1\right)\left(2\sqrt{5}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-7\left(2\sqrt{5}-1\right)}{2^{2}\left(\sqrt{5}\right)^{2}-1^{2}}
Expand \left(2\sqrt{5}\right)^{2}.
\frac{-7\left(2\sqrt{5}-1\right)}{4\left(\sqrt{5}\right)^{2}-1^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{-7\left(2\sqrt{5}-1\right)}{4\times 5-1^{2}}
The square of \sqrt{5} is 5.
\frac{-7\left(2\sqrt{5}-1\right)}{20-1^{2}}
Multiply 4 and 5 to get 20.
\frac{-7\left(2\sqrt{5}-1\right)}{20-1}
Calculate 1 to the power of 2 and get 1.
\frac{-7\left(2\sqrt{5}-1\right)}{19}
Subtract 1 from 20 to get 19.
\frac{-14\sqrt{5}+7}{19}
Use the distributive property to multiply -7 by 2\sqrt{5}-1.