Evaluate
\frac{7-2\sqrt{7}}{3}\approx 0.569499126
Share
Copied to clipboard
\frac{-7\left(-2\sqrt{7}+7\right)}{\left(-2\sqrt{7}-7\right)\left(-2\sqrt{7}+7\right)}
Rationalize the denominator of \frac{-7}{-2\sqrt{7}-7} by multiplying numerator and denominator by -2\sqrt{7}+7.
\frac{-7\left(-2\sqrt{7}+7\right)}{\left(-2\sqrt{7}\right)^{2}-7^{2}}
Consider \left(-2\sqrt{7}-7\right)\left(-2\sqrt{7}+7\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-7\left(-2\sqrt{7}+7\right)}{\left(-2\right)^{2}\left(\sqrt{7}\right)^{2}-7^{2}}
Expand \left(-2\sqrt{7}\right)^{2}.
\frac{-7\left(-2\sqrt{7}+7\right)}{4\left(\sqrt{7}\right)^{2}-7^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{-7\left(-2\sqrt{7}+7\right)}{4\times 7-7^{2}}
The square of \sqrt{7} is 7.
\frac{-7\left(-2\sqrt{7}+7\right)}{28-7^{2}}
Multiply 4 and 7 to get 28.
\frac{-7\left(-2\sqrt{7}+7\right)}{28-49}
Calculate 7 to the power of 2 and get 49.
\frac{-7\left(-2\sqrt{7}+7\right)}{-21}
Subtract 49 from 28 to get -21.
\frac{1}{3}\left(-2\sqrt{7}+7\right)
Divide -7\left(-2\sqrt{7}+7\right) by -21 to get \frac{1}{3}\left(-2\sqrt{7}+7\right).
\frac{1}{3}\left(-2\right)\sqrt{7}+\frac{1}{3}\times 7
Use the distributive property to multiply \frac{1}{3} by -2\sqrt{7}+7.
\frac{-2}{3}\sqrt{7}+\frac{1}{3}\times 7
Multiply \frac{1}{3} and -2 to get \frac{-2}{3}.
-\frac{2}{3}\sqrt{7}+\frac{1}{3}\times 7
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
-\frac{2}{3}\sqrt{7}+\frac{7}{3}
Multiply \frac{1}{3} and 7 to get \frac{7}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}