Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{-7\left(-2\sqrt{7}+7\right)}{\left(-2\sqrt{7}-7\right)\left(-2\sqrt{7}+7\right)}
Rationalize the denominator of \frac{-7}{-2\sqrt{7}-7} by multiplying numerator and denominator by -2\sqrt{7}+7.
\frac{-7\left(-2\sqrt{7}+7\right)}{\left(-2\sqrt{7}\right)^{2}-7^{2}}
Consider \left(-2\sqrt{7}-7\right)\left(-2\sqrt{7}+7\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-7\left(-2\sqrt{7}+7\right)}{\left(-2\right)^{2}\left(\sqrt{7}\right)^{2}-7^{2}}
Expand \left(-2\sqrt{7}\right)^{2}.
\frac{-7\left(-2\sqrt{7}+7\right)}{4\left(\sqrt{7}\right)^{2}-7^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{-7\left(-2\sqrt{7}+7\right)}{4\times 7-7^{2}}
The square of \sqrt{7} is 7.
\frac{-7\left(-2\sqrt{7}+7\right)}{28-7^{2}}
Multiply 4 and 7 to get 28.
\frac{-7\left(-2\sqrt{7}+7\right)}{28-49}
Calculate 7 to the power of 2 and get 49.
\frac{-7\left(-2\sqrt{7}+7\right)}{-21}
Subtract 49 from 28 to get -21.
\frac{1}{3}\left(-2\sqrt{7}+7\right)
Divide -7\left(-2\sqrt{7}+7\right) by -21 to get \frac{1}{3}\left(-2\sqrt{7}+7\right).
\frac{1}{3}\left(-2\right)\sqrt{7}+\frac{1}{3}\times 7
Use the distributive property to multiply \frac{1}{3} by -2\sqrt{7}+7.
\frac{-2}{3}\sqrt{7}+\frac{1}{3}\times 7
Multiply \frac{1}{3} and -2 to get \frac{-2}{3}.
-\frac{2}{3}\sqrt{7}+\frac{1}{3}\times 7
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
-\frac{2}{3}\sqrt{7}+\frac{7}{3}
Multiply \frac{1}{3} and 7 to get \frac{7}{3}.